0


多实例学习的袋差异

Bag Dissimilarities for Multiple Instance Learning
课程网址: http://videolectures.net/simbad2011_tax_dissimilarities/  
主讲教师: David M. J. Tax
开课单位: 代尔夫特工业大学
开课时间: 2011-10-17
课程语种: 英语
中文简介:
当无法用单个特征向量很好地表示对象时,可以使用特征向量的集合。这是在多实例学习中完成的,在这种情况下,它被称为实例包。通过使用实例包,与使用单个特征向量时相比,对象获得了更多的内部结构。这提高了表示的表达能力,但也增加了对象分类的复杂性。本文表明,对于不是由单个实例确定袋子的类别标签的情况,简单的袋子不相似性度量可以明显优于标准的多个实例分类器。特别是仅计算实例之间的平均最小距离的度量,或使用地球移动者距离的度量,都表现得很好。
课程简介: When objects cannot be represented well by single feature vectors, a collection of feature vectors can be used. This is what is done in Multiple Instance learning, where it is called a bag of instances. By using a bag of instances, an object gains more internal structure than when a single feature vector is used. This improves the expressiveness of the representation, but also adds complexity to the classification of the object. This paper shows that for the situation that not a single instance determines the class label of a bag, simple bag dissimilarity measures can significantly outperform standard multiple instance classifiers. In particular a measure that computes just the average minimum distance between instances, or a measure that uses the Earth Mover’s distance, perform very well.
关 键 词: 特征向量; 多实例学习; 实例包
课程来源: 视频讲座网
最后编审: 2019-09-21:cwx
阅读次数: 72