稀疏典范相关分析Sparse Canonical Correlation Analysis |
|
课程网址: | http://videolectures.net/sip08_hardoon_scca/ |
主讲教师: | David R. Hardoon |
开课单位: | 伦敦全球大学 |
开课时间: | 2008-12-18 |
课程语种: | 英语 |
中文简介: | 我们提出了一种使用最小二乘法求解稀疏凸框架中的典范相关分析(CCA)的新颖方法。提出的方法着重于一个场景,当一个人对第一个视图感兴趣(或仅限于)原始表示而对第二个视图具有双重表示时。稀疏CCA(SCCA)最小化了原始和双重投影中使用的特征数量,同时最大化了两个视图之间的相关性。该方法在英语法语和英语西班牙语两个配对的语料库中进行了演示,以进行配偶检索。在队友恢复中,我们能够观察到,当原始特征的数量很大时,SCCA的性能优于内核CCA(KCCA),可以从一组稀疏的特征中学习公共语义空间。 |
课程简介: | We present a novel method for solving Canonical Correlation Analy- sis (CCA) in a sparse convex framework using a least squares approach. The presented method focuses on the scenario when one is interested in (or limited to) a primal representation for the first view while having a dual rep- resentation for the second view. Sparse CCA (SCCA) minimises the number of features used in both the primal and dual pro jections while maximising the correlation between the two views. The method is demonstrated on two paired corpuses of English-French and English-Spanish for mate-retrieval. We are able to observe, in the mate-retreival, that when the number of the original features is large SCCA outperforms Kernel CCA (KCCA), learning the common semantic space from a sparse set of features. |
关 键 词: | 最小二乘法; 双重表示; 双重投影 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-21:cwx |
阅读次数: | 355 |