非参数加性模型中的变量选择Variable selection in nonparametric additive models |
|
课程网址: | http://videolectures.net/sip08_horowitz_vsina/ |
主讲教师: | Joel Horowitz |
开课单位: | 西北大学 |
开课时间: | 2008-12-18 |
课程语种: | 英语 |
中文简介: | 我们考虑条件均值函数的非参数加性模型,其中变量和加性成分的数量可能远大于样本数量,但非零加性成分的数量相对于样本数量较小。统计问题是确定哪些添加剂成分不为零。可加成分通过B样条基的截断级数展开来近似。自适应组LASSO用于选择非零分量。我们给出了这样的条件,在该条件下,随着样本量的增加,该过程可以正确地选择非零分量,并且概率接近1。根据模型选择,可以使用现有方法获得非零分量的有效的,渐近正态的估计。蒙特卡洛实验的结果表明,自适应组LASSO程序适用于中等大小的样本。 |
课程简介: | We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be much larger than the sample size but the number of non-zero additive compo- nents is small relative to the sample size. The statistical problem is to determine which additive components are non-zero. The additive compo- nents are approximated by truncated series expansions with B-spline bases. The adaptive group LASSO is used to select non-zero components. We give conditions under which this procedure selects the non-zero components correctly with probability approaching one as the sample size increases. Fol- lowing model selection, oracle-efficient, asymptotically normal estimators of the non-zero components can be obtained by using existing methods. The results of Monte Carlo experiments show that the adaptive group LASSO procedure works well with samples of moderate size. |
关 键 词: | 均值函数; 加性成分; 样本数量 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-21:cwx |
阅读次数: | 147 |