0


动力学系统子空间识别的一种统计学习方法

A statistical learning approach to subspace identification of dynamical systems
课程网址: http://videolectures.net/slsfs05_bie_slasi/  
主讲教师: Tijl De Bie
开课单位: 布里斯托大学
开课时间: 2007-02-25
课程语种: 英语
中文简介:
在识别线性动力系统的不同方法中,子空间识别在最近十年中变得越来越流行。原因是由于没有非凸优化问题,数值稳定性和统计特性,从而简化了算法。有趣的是,在统计方面,子空间识别的研究集中在证明与渐近无偏有关的性质。在这个扩展的摘要中,我们激发了在小样本情况下如何使用适当的正则化方法会有所帮助。此外,这种正则化允许使用内核技巧来识别系统,其中状态和输出方程式中的输入项是输入变量的非线性函数。
课程简介: Among the different approaches to identification of linear dynamical systems, subspace identification has become increasingly popular in the last decade. The reasons are the algorithmic simplicity thanks to the absence of non-convex optimization problems, the numerical stabil- ity and the statistical properties. Interestingly, concerning the statistical side, research in subspace identification has been concentrated on proving properties related to asymptotic unbiasedness. In this extended abstract we motivate how the use of an appropriate regularization can be helpful in the small sample case. Furthermore, this regularization allows one to use the kernel trick to identify systems where the input term in the state and output equations is a nonlinear function of the input variables.
关 键 词: 线性动力系统; 子空间识别; 非凸优化
课程来源: 视频讲座网
最后编审: 2019-09-21:cwx
阅读次数: 57