离散PCADiscrete PCA |
|
课程网址: | http://videolectures.net/slsfs05_buntine_dp/ |
主讲教师: | Wray Buntine |
开课单位: | 莫纳什大学 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 离散数据中主成分的分析方法已经存在了一段时间了,名称多种多样,例如隶属度等级建模,概率潜在语义索引,混合基因型推断,非负矩阵分解,潜在Dirichlet分配,多项式PCA和Gamma Poisson模型。尽管本演讲将重点讨论贝叶斯框架,但用于开发算法的统计方法也各不相同。出版得最好的应用是基因类型推断,但是文本分析现在越来越多地被使用,因为该算法可以处理非常大的稀疏矩阵。本演讲将介绍通用模型,PCA和ICA的离散版本,替代表示形式以及几种算法(平均域和Gibbs)。 |
课程简介: | Methods for analysis of principal components in discrete data have existed for some time under various names such as grade of membership modelling, probabilistic latent semantic indexing, genotype inference with admixture, non-negative matrix factorization, latent Dirichlet allocation, multinomial PCA, and Gamma-Poisson models. Statistical methodologies for developing algorithms are equally as varied, although this talk will focus on the Bayesian framework. The most well published application is genetype inference, but text analysis is now increasingly seeing use because the algorithms cope with very large sparse matrices. This talk will present the general model, a discrete version of both PCA and ICA, present alternative representations, and several algorithms (mean field and Gibbs). |
关 键 词: | 离散数据; 等级建模; 混合基因型 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-21:cwx |
阅读次数: | 60 |