0


监督学习任务集合中成对实例的特征学习

Feature-Learning from Pairs of Examples in Collections of Supervised Learning Tasks
课程网址: http://videolectures.net/slsfs05_maurer_flpec/  
主讲教师: Andreas Maurer
开课单位: 斯特尔莫成像
开课时间: 2007-02-25
课程语种: 英语
中文简介:
我们提出了一种算法,该算法使用相等或不等等类标签的示例对来选择内核诱导Hilbert空间上的投影。在Hilbert Schmidt算子空间上作为有界线性函数的.nite维投影的表示被利用来给出搜索的假设类的Rademacher复杂性的界限,从而导致对所得特征图的PAC类型性能保证。所提出的算法将投影返回到根据示例对构造的经验算子的主特征向量的跨度上。实验表明,在不同但相关的学习任务之间进行了有效的知识转换。
课程简介: We present an algorithm which uses example pairs of equal or unequal class labels to select a projection on a kernel-induced Hilbert space. A representation of .nite dimensional projections as bounded lin- ear functionals on a space of Hilbert-Schmidt operators is exploited to give bounds on the Rademacher complexity of the class of hypotheses searched, leading to PAC-type performance guarantees for the resulting feature maps. The proposed algorithm returns the projection onto the span of the principal eigenvectors of an empirical operator constructed in terms of the example pairs. Experiments demonstrate an e¤ective trans- fer of knowledge between di¤erent but related learning tasks.
关 键 词: 有界线性函数; 主特征向量; 知识转换
课程来源: 视频讲座网
最后编审: 2019-09-21:cwx
阅读次数: 66