0


潜在因子模型用于时间序列数据的大型高精度矩阵估计

Large Precision Matrix Estimation for Time Series Data with Latent Factor Model
课程网址: http://videolectures.net/smls09_lam_lpmeft/  
主讲教师: Clifford Lam
开课单位: 伦敦经济学院
开课时间: 2009-05-06
课程语种: 英语
中文简介:
由于维数的诅咒,难以估计大精度(逆协方差)矩阵。当多元向量的维数p可比甚至大于观察到的时间点数n时,样本协方差矩阵对于估计协方差矩阵非常不利。它是奇异的,因此无法对精度矩阵求逆。当p≈n甚至p> n时,我们使用Pan和Yao(2008)提出的因子模型和程序对多元时间序列数据进行降维。获得未知因子的版本和相应的因子负荷矩阵。我们表明,当每个因子由O(p)个横截面数据点共享时,原始数据的估计因子负荷矩阵以及估计的精度矩阵在L2范数中均以不依赖于的速率弱收敛至真实值页。这个惊人的结果清楚地表明了“诅咒”被维度的“祝福”所抵消。当股票数量p大时,这在金融投资组合分配中特别有用。精度矩阵在L2范数中的收敛速度与估计的最优投资组合的优劣直接相关,后者在均方L2范数中以与p无关的比率微弱地收敛到真实平方。我们还表明,该方法不能比样本协方差矩阵更好地估计协方差矩阵,这与Fan等人的结果一致。 (2008)当因素已知时。当不满足假设时,仿真会向估算者展示各种影响。分析一组真实的股市数据。
课程简介: Estimating a large precision (inverse covariance) matrix is difficult due to the curse of dimensionality. The sample covariance matrix is notoriously bad for estimating the covariance matrix when the dimension p of the multivariate vector is comparable or even larger than the number of time points n observed. It is singular and hence cannot be inverted for the precision matrix. We use the factor model and procedure proposed by Pan and Yao (2008) for multivariate time series data to carry out dimension reduction when p ≈ n or even p > n. A version of the unknown factors and the corresponding factor loadings matrix are obtained. We show that when each factor is shared by O(p) cross-sectional data points, the estimated factor loadings matrix, as well as the estimated precision matrix for the original data, converge weakly in L2 -norm to the true ones at a rate independent of p. This striking result demonstrates clearly when the “curse” is cancelled out by the “blessings” in dimensionality. It is particularly useful in portfolio allocation in finance when the number of stocks p is large. Convergence rate in L2 norm for the precision matrix is directly related to the goodness of the estimated optimal portfolio, which converges weakly to the true one in the average squared L2 norm at a rate also independent of p as a result. We also show that the method cannot estimate the covariance matrix better than the sample covariance matrix, which coincides with the result in Fan et al. (2008) when factors are known. Simulations demonstrate a variety of effects to the estimators when assumptions are not met. A set of real stock market data is analysed.
关 键 词: 维数; 矩阵; 多元时间序列
课程来源: 视频讲座网
最后编审: 2019-09-21:cwx
阅读次数: 54