潜在变量稀疏贝叶斯模型Latent Variable Sparse Bayesian Models |
|
课程网址: | http://videolectures.net/smls09_wipf_lvsbm/ |
主讲教师: | David P Wipf |
开课单位: | 微软公司 |
开课时间: | 2009-05-06 |
课程语种: | 英语 |
中文简介: | 最近引入了各种实用的方法,用于使用对未知系数的稀疏先验的线性模型执行估计和推理,该过程可能在模型选择和压缩感测等不同领域产生广泛影响。虽然并非总是如此衍生或销售,但许多方法可以看作是贝叶斯模型的产物,该模型利用了稀疏分布中固有的,通过超参数表示的潜在结构,该结构可以通过超参数表示。在这里,我们重点介绍四种策略:(i)标准MAP估计,(ii)超参数MAP估计(也称为证据最大化或经验贝叶斯),(iii)使用阶乘后验的变分贝叶斯和(iv)使用凸下位的局部变分近似边界。所有这些方法都可用于计算基本完整分布的可处理的后验近似值。但是,这些近似的确切性质通常不清楚,因此,确定哪种策略和稀疏先验是合适的,这是一项艰巨的任务。我们并非像有时那样使用完整的贝叶斯模型的可信度来证明这种选择的合理性,而是基于每种方法中出现的实际潜在成本函数进行评估。为此,我们讨论了涵盖以上所有内容的通用,统一的目标函数,然后针对代表性应用(例如找到最大程度稀疏(即最小的L0拟范数)表示形式)评估其特性。这个目标函数可以用系数空间或超参数空间表示,这种对偶性有助于在看似完全不同的方法之间进行直接比较,并自然而然地会带来理论上的见识和有用的优化策略,例如重新加权L1和L2最小化。该观点还提出了稀疏线性模型的扩展,包括替代似然函数(例如,用于分类)以及适用于协方差分量估计,组选择和包含显式系数约束(例如,非负性)的更通用的稀疏先验。将考虑与神经成像和压缩感测有关的几个示例。 |
课程简介: | A variety of practical approaches have recently been introduced for performing estimation and inference using linear models with sparse priors on the unknown coefficients, a process that can have wide-ranging implications in diverse areas such as model selection and compressive sensing. While not always derived or marketed as such, many of these methods can be viewed as arising from Bayesian models capitalizing on latent structure, expressible via hyperparameters, inherent in sparse distributions. Here we focus on four such strategies: (i) standard MAP estimation, (ii) hyperparameter MAP estimation, also called evidence maximization or empirical Bayes, (iii) variational Bayes using a factorial posterior, and (iv) local variational approximation using convex lower bounding. All of these approaches can be used to compute tractable posterior approximations to the underlying full distribution; however, the exact nature of these approximations is frequently unclear and so it is a challenging task to determine which strategy and sparse prior are appropriate. Rather than justifying such selections using the credibility of the full Bayesian model as is sometimes done, we base evaluations on the actual underlying cost functions that emerge from each method. To this end we discuss a common, unifying objective function that encompasses all of the above and then assess its properties with respect to representative applications such as finding maximally sparse (i.e., minimal L0 quasi-norm) representations. This objective function can be expressed in either coefficient space or hyperparameter space, a duality that facilitates direct comparisons between seemingly disparate approaches and naturally leads to theoretical insights and useful optimization strategies such as reweighted L1 and L2 minimization. This perspective also suggests extensions of the sparse linear model, including alternative likelihood functions (e.g., for classification) and more general sparse priors applicable to covariance component estimation, group selection, and the incorporation of explicit coefficient constraints (e.g., non-negativity). Several examples related to neuroimaging and compressive sensing will be considered. |
关 键 词: | 未知系数; 稀疏先验; 线性模型 |
课程来源: | 视频讲座网 |
最后编审: | 2020-04-28:chenxin |
阅读次数: | 116 |