将信息源推荐给Twitter中的信息搜索者Recommending information sources to information seekers in Twitter |
|
课程网址: | http://videolectures.net/socialweb2011_armentano_recommending/ |
主讲教师: | Marcelo G. Armentano |
开课单位: | 伊斯坦斯坦研究所 |
开课时间: | 2011-08-04 |
课程语种: | 英语 |
中文简介: | 使用Twitter在不断扩大的微型博客社区中找到高质量的资源对于寻求信息的人来说是必不可少的,以应对信息过载。在本文中,我们提出了一种推荐算法,旨在识别可能感兴趣的用户在Twitter网络中关注。该算法首先探索根据启发式程序从目标用户(我们希望向其推荐先前未知的关注对象的用户)开始的连接图,以便选择一组要推荐的候选用户。然后根据他们发布的推文内容与目标用户兴趣之间的相似性对候选用户集进行排名。进行了实验评估,以确定不同配置策略的影响。 |
课程简介: | Finding high-quality sources in the expanding micro-blogging community using Twitter becomes essential for information seekers in order to cope with information overload. In this paper, we present a recommendation algorithm aiming to identify potentially interesting users to follow in the Twitter network. This algorithm first explores the graph of connections starting at the target user (the user to whom we wish to recommend previously unknown followees) in order to select a set of candidate users to recommend, according to an heuristic procedure. The set of candidate users is then ranked according to the similarity between the content of tweets that they publish and the target user interests. Experimental evaluation was conducted to determine the impact of different profiling strategies. |
关 键 词: | 微型博客; 信息过载; 推荐算法 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-21:cwx |
阅读次数: | 71 |