首页统计学
   首页社会学
   首页管理学
0


协作式过滤中主动学习的全系统效力

System-wide effectiveness of active learning in collaborative filtering
课程网址: http://videolectures.net/socialweb2011_elahi_system/  
主讲教师: Mehdi Elahi
开课单位: 博赞博尔扎诺自由大学
开课时间: 2011-08-04
课程语种: 英语
中文简介:
协同过滤系统的准确性主要取决于两个因素:推荐算法的质量以及可用产品等级的数量和质量。通常,从用户获得的评分越高,推荐越有效。但是,并非所有的评分都同样有用,定义为评分启发策略的特定技术可以用来有选择地选择要提供给用户的评分项目。在本文中,我们考虑了几种评级启发策略,并评估了它们的系统效用,即添加新评级后系统的整体行为如何变化。我们讨论了关于几种指标(MAE,精度,NDCG和覆盖率)的不同策略的利弊。结果表明,不同的策略可以提高推荐质量的不同方面。
课程简介: The accuracy of a collaborative-filtering system largely depends on two factors: the quality of the recommendation algorithm and the number and quality of the available product ratings. In general, the more ratings are elicited from the users, the more effective the recommendations are. However, not all the ratings are equally useful and specific techniques, which are defined as rating elicitation strategies, can be used to selectively choosing the items to be presented to the user for rating. In this paper we consider several rating elicitation strategies and we evaluate their system utility, i.e., how the overall behavior of the system changes when new ratings are added. We discuss the pros and cons of different strategies with respect to several metrics (MAE, precision, NDCG and coverage). It is shown that different strategies can improve different aspects of the recommendation quality.
关 键 词: 协同过滤; 推荐算法; 产品等级
课程来源: 视频讲座网
最后编审: 2019-09-21:cwx
阅读次数: 45