0


概率和贝叶斯建模II

Probabilistic and Bayesian Modelling II
课程网址: http://videolectures.net/sscs06_opper_pbmi/  
主讲教师: Manfred Opper
开课单位: 柏林工业大学
开课时间: 2007-02-25
课程语种: 英语
中文简介:
来自各种不同应用程序的复杂数据的可用性急剧增长。数据分析器的挑战是通过识别基础数据的有用模式和结构来从原始数据中提取知识。本模块介绍了对此类复杂数据进行建模的自适应和概率方法。我们首先考虑在高维数据中查找结构。内核方法用于识别引入的非线性模式,同时解决了从有限数据推断的统计可靠性问题。考虑了子空间识别,并显示了跨不同数据模态的相关性,为提供引发语义表示的有用方法。本课程的最后一部分将介绍学习概率模型(例如,在生物序列数据中),融合先验知识和数据,复杂和近似推论。
课程简介: There is a dramatic growth in the availability of complex data from a wide range of different applications. The challenge of the data analyzer is to extract knowledge from the raw data by identifying the useful patterns and structures that underlie it. This module introduces adaptive and probabilistic approaches to modeling such complex data. We first consider finding structure in high-dimensional data. The kernel methods approach to identifying non-linear patterns in introduced while addressing the issues of statistical reliability of inferences made from limited data. Subspace identification is considered and correlations across different data modalities are shown to provide a useful approach to eliciting semantic representations. The final section of the course will introduce learning probabilistic models, (e.g. in biological sequence data), fusing prior knowledge and data, complex and approximate inference.
关 键 词: 复杂数据; 数据分析器; 非线性模式
课程来源: 视频讲座网
最后编审: 2019-09-26:cwx
阅读次数: 42