黎曼流形分类Classification on Riemannian Manifolds |
|
课程网址: | http://videolectures.net/ssspr2010_porikli_crm/ |
主讲教师: | Fatih M. Porikli |
开课单位: | 三菱电机研究实验室 |
开课时间: | 2010-10-13 |
课程语种: | 英语 |
中文简介: | 可以将大量自然现象表述为可微流形上的推论。更具体地说,在计算机视觉中,这样的基本概念出现在特征选择,姿势估计,运动结构,外观跟踪和形状嵌入中。与均匀的欧几里得空间不同,可微流形具有局部同胚性,因此,微分几何仅适用于局部切线空间。这避免了将需要矢量范数的常规方法并入歧管的分类问题中,在歧管中,通过连接两个点的最小长度的曲线定义了距离。最近,我们引入了一个区域协方差描述符,该描述符在正定矩阵上展现出黎曼流形结构。通过在切线空间上施加弱分类器并通过Karcher手段建立加权和,我们引导了具有逻辑损失函数的增强分类器的集合。以这种方式,我们不需要展平歧管或发现其拓扑。我们演示了有关人类检测和面部识别问题的新型流形分类器。 |
课程简介: | A large number of natural phenomena can be formulated as inference on differentiable manifolds. More specifically in computer vision, such underlying notions emerge in feature selection, pose estimation, structure from motion, appearance tracking, and shape embedding. Unlike the uniform Euclidean space, differentiable manifolds exhibit local homeomorphism, thus, the differential geometry is applicable only within local tangent spaces. This prevents incorporation of conventional methods that require vector norms into the classification problems on manifolds where distances are defined through the curves of minimal length connecting two points. Recently we introduced a region covariance descriptor that exhibits a Riemannian manifold structure on positive definite matrices. By imposing weak classifiers on tangent spaces and establishing weighted sums via Karcher means, we bootstrap an ensemble of boosted classifiers with logistic loss functions. In this manner, we do not need to flatten the manifold or discover its topology. We demonstrate the new manifold classifiers on human detection and face recognition problems. |
关 键 词: | 可微流形; 黎曼流形; 流形分类器 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-08:cxin |
阅读次数: | 162 |