建模中的数学思维The Problem of Modelling the Mathematical Mind |
|
课程网址: | http://videolectures.net/turing100_penrose_mathematical_mind/ |
主讲教师: | Roger Penrose |
开课单位: | 牛津大学 |
开课时间: | 2012-07-10 |
课程语种: | 英语 |
中文简介: | 继阿兰·图灵(Alan Turing)在1937年发表的突破性论文(介绍了他的通用图灵机概念)之后,他于1939年提出了基于序数逻辑和Oracle机器的概括,这些归纳显然是出于试图以一种可以逃避的方式对数学思维建模的动机哥德尔不完全性定理提出的明显限制。在本次演讲中,我将介绍“谨慎的先知”作为图灵的先知的更人性化的想法。尽管如此,我仍然表明,即使这样也不能完全理解我们所理解的全部功能。我提出了可能的物理过程的问题,这似乎是为了规避这些Gödel类型限制所必需的。在演讲结束时,我报告了一些令人吃惊的新实验,这些实验似乎表明了对有意识的大脑活动的潜在物理过程的新见解,并且我推测这可能与人类理解的力量有关。 |
课程简介: | Following Alan Turing’s ground-breaking 1937 paper, which introduced his notion of the Universal Turing machine, he suggested, in 1939, generalizations based on ordinal logic and oracle machines, these being apparently motivated by attempts to model the mathematical mind in a way that could evade the apparent limitations presented by Gödel’s incompleteness theorems. In this talk, I introduce the idea of a “cautious oracle” as a more human version of Turing’s oracles. Nevertheless, I show that even this fails to capture the essence of the full capabilities of our understanding. I raise the issue of possible physical processes that would appear to be needed in order to circumvent these Gödel-type restrictions. At the end of the talk, I report on some startling new experiments, which appear to point to new insights into the possible physical processes underlying conscious brain activity, and I speculate on how this might relate to the power of human understanding. |
关 键 词: | 维阿兰.图灵; 序数逻辑; 定理限制; 物理过程; 大脑活动 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-08:cxin |
阅读次数: | 69 |