一类支持向量机的上下文变化检测Context changes detection by one-class svms |
|
课程网址: | http://videolectures.net/um05_loosli_ccdoc/ |
主讲教师: | Gaëlle Loosli |
开课单位: | 国家应用科学研究所 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 对于旨在考虑用户的系统,我们需要考虑存在许多不同的行为以及许多不同的用户。因此,我们需要适应性的,无监督的(或半监督的)学习方法。我们的想法是利用可穿戴计算机和可穿戴传感器(实际上,至少对于某些类别的人(例如飞行员),使用它们是现实的)来检索用户的当前环境。可穿戴式传感器可以是生理性的(EMG,ECG,血压……)或物理性的(加速度计,麦克风……)。上下文取决于使用系统的应用程序,可以是行为,情感状态或这些的组合。由于上下文检索的问题非常复杂,因此我们选择首先检测更改,而不是直接标记。实际上,通过这种方式,我们可以应用无监督且快速的方法,从而节省了标记时间(然后仅在检测到更改时才应用标记任务)。我们的兴趣在于低水平处理,我们提出了一种非参数变化检测算法。该算法旨在提供未标记上下文的序列,以供更高级别的应用程序分析。根据用户佩戴的非侵入式传感器发出的信号进行检测。注意,这里介绍的方法也可以适用于外部传感器。 |
课程简介: | For a system that aims at taking into account the user, we need to consider that there are many different behaviors as well as many different users. Hence we need adaptative, unsupervised (or semi-supervised) learning methods. Our idea is to take advantage of wearable computers and wearable sensors (indeed their use is realistic at least for certain categories of people, such as pilots) to retrieve the current context of the user. Wearable sensors can be physiological (EMG, ECG, blood volume pressure...) or physical (accelerometers, microphone...). Contexts are depending on the application using the system and can be behaviors, affective states, combinations of these. Since this problem of context retrieval is very complex, we choose to detect changes at first place instead of labeling directly. Indeed this way we can apply unsupervised and fast methods which saves time for labeling (the labeling task is then applied only when changes are detected). Our interest lies in low level treatments and we present a non parametric change detection algorithm. This algorithm is meant to provide sequences of unlabeled contexts to be analyzed to higher level applications. Detection is made from signals given by non invasive sensors the user is wearing. Note that the methods presented here could as well be adapted to external sensors. |
关 键 词: | 半监督; 可穿戴传感器; 情感状态 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-27:cwx |
阅读次数: | 37 |