MOA概念漂移用于数据流的主动学习策略MOA Concept Drift Active Learning Strategies for Streaming Data |
|
课程网址: | http://videolectures.net/wapa2011_bifet_moa/ |
主讲教师: | Albert Bifet |
开课单位: | 国立高等电信学校 |
开课时间: | 2011-11-11 |
课程语种: | 英语 |
中文简介: | 我们提出了一个不断发展的数据流上主动学习的框架,作为MOA系统的扩展。在学习对流数据进行分类时,获得真实的标签可能需要大量的努力,并且可能会产生过多的成本。主动学习的重点是学习尽可能少使用标签的准确模型。流数据对主动学习提出了额外的挑战,因为数据分布可能随时间变化(概念漂移),并且分类器需要适应。传统的主动学习策略集中于查询最不确定的实例,这些实例通常集中在决策边界周围。如果未在边界附近发生更改,则将丢失这些更改,并且分类器将无法适应。我们提出了一种软件系统,该软件系统可以实施主动学习策略,并扩展MOA框架。该软件根据GNU GPL许可发布。 |
课程简介: | We present a framework for active learning on evolving data streams, as an extension to the MOA system. In learning to classify streaming data, obtaining the true labels may require major effort and may incur excessive cost. Active learning focuses on learning an accurate model with as few labels as possible. Streaming data poses additional challenges for active learning, since the data distribution may change over time (concept drift) and classifiers need to adapt. Conventional active learning strategies concentrate on querying the most uncertain instances, which are typically concentrated around the decision boundary. If changes do not occur close to the boundary, they will be missed and classifiers will fail to adapt. We propose a software system that implements active learning strategies, extending the MOA framework. This software is released under the GNU GPL license. |
关 键 词: | 数据流; 主动学习; 分类器 |
课程来源: | 视频讲座网 |
最后编审: | 2019-10-10:cwx |
阅读次数: | 109 |