0


检测twitter流数据中的情绪变化

Detecting Sentiment Change in Twitter Streaming Data
课程网址: http://videolectures.net/wapa2011_bifet_sentiment/  
主讲教师: Albert Bifet
开课单位: 国立高等电信学校
开课时间: 2011-11-11
课程语种: 英语
中文简介:
MOA TweetReader是一个实时系统,可实时读取tweet,检测变化并查找频率变化的术语。 Twitter是一个微博客服务,旨在发现世界各地随时随地的情况。 Twitter消息简短且不断生成,非常适合使用数据流挖掘进行知识发现。 MOA TweetReader是MOA框架的软件扩展。大规模在线分析(MOA)是一种软件环境,用于实施算法并运行实验,以从不断发展的数据流中进行在线学习。 MOA TweetReader是根据GNU GPL许可证发行的。
课程简介: MOA-TweetReader is a real-time system to read tweets in real time, to detect changes, and to find the terms whose frequency changed. Twitter is a micro-blogging service built to discover what is happening at any moment in time, anywhere in the world. Twitter messages are short, and generated constantly, and well suited for knowledge discovery using data stream mining. MOA-TweetReader is a software extension to the MOA framework. Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA-TweetReader is released under the GNU GPL license.
关 键 词: 实时系统; 数据流; 软件扩展
课程来源: 视频讲座网
最后编审: 2019-09-27:cwx
阅读次数: 38