0


机器学习排名系统的提前退出优化

Early Exit Optimizations for Additive Machine Learned Ranking Systems
课程网址: http://videolectures.net/wsdm2010_cambazoglu_eeo/  
主讲教师: Berkant Barla Cambazoglu
开课单位: 雅虎公司
开课时间: 2010-09-10
课程语种: 英语
中文简介:
一些商业网络搜索引擎依靠复杂的机器学习系统对网络文档进行排名。由于收集量很大,并且查询响应时间受到严格限制,因此这些学习系统的在线效率成为瓶颈。在这种系统中的一个重要问题是在不牺牲结果质量的情况下加快排名过程。在本文中,我们提出了优化策略,允许在加性学习系统中计算短路分数。在最先进的机器学习系统和从Yahoo!获得的大型现实查询日志中对策略进行了评估。通过提出的策略,我们能够将得分计算速度提高四倍以上,而结果质量几乎没有损失。
课程简介: Some commercial web search engines rely on sophisticated machine learning systems for ranking web documents. Due to very large collection sizes and tight constraints on query response times, online efficiency of these learning systems forms a bottleneck. An important problem in such systems is to speedup the ranking process without sacrificing much from the quality of results. In this paper, we propose optimization strategies that allow short-circuiting score computations in additive learning systems. The strategies are evaluated over a state-of-the-art machine learning system and a large, real-life query log, obtained from Yahoo!. By the proposed strategies, we are able to speedup the score computations by more than four times with almost no loss in result quality.
关 键 词: 商业网络; 搜索引擎; 机器学习
课程来源: 视频讲座网
最后编审: 2020-01-13:chenxin
阅读次数: 37