带列表和成对约束的区间秩等渗回归IntervalRank - Isotonic Regression with Listwise and Pairwise Constraints |
|
课程网址: | http://videolectures.net/wsdm2010_moon_irir/ |
主讲教师: | Taesup Moon |
开课单位: | 雅虎公司 |
开课时间: | 2010-09-12 |
课程语种: | 英语 |
中文简介: | 在网络搜索,机器学习和信息检索的交叉点上,根据一组检索文档与给定查询的相关性对它们进行排序已成为一个普遍的问题。最近的排名工作集中在许多不同的范例上,即逐点,成对和列表式方法。这些范例中的每个范例都集中在数据集的不同方面,而基本上忽略了其他方面。当前的论文展示了它们的组合如何能够提高排名性能,以及如何在对数线性时间内实现。该算法的基本思想是使用等渗回归,并根据每个相关等级选择自适应带宽。这导致隐式定义的损失函数,该函数可以通过次梯度下降过程有效地最小化。实验结果表明,所得算法在商业搜索引擎数据和公开可用的LETOR数据集上均具有竞争力。 |
课程简介: | Ranking a set of retrieved documents according to their relevance to a given query has become a popular problem at the intersection of web search, machine learning, and information retrieval. Recent work on ranking focused on a number of different paradigms, namely, pointwise, pairwise, and list-wise approaches. Each of those paradigms focuses on a different aspect of the dataset while largely ignoring others. The current paper shows how a combination of them can lead to improved ranking performance and, moreover, how it can be implemented in log-linear time. The basic idea of the algorithm is to use isotonic regression with adaptive bandwidth selection per relevance grade. This results in an implicitly-defined loss function which can be minimized efficiently by a subgradient descent procedure. Experimental results show that the resulting algorithm is competitive on both commercial search engine data and publicly available LETOR data sets. |
关 键 词: | 网络搜索; 机器学习; 信息检索 |
课程来源: | 视频讲座网 |
最后编审: | 2020-01-13:chenxin |
阅读次数: | 87 |