0


无监督临床语言翻译

Unsupervised Clinical Language Translation
课程网址: http://videolectures.net/kdd2019_weng_chung_szolovits/  
主讲教师: Wei-Hung Weng
开课单位: 麻省理工学院
开课时间: 2020-03-02
课程语种: 英语
中文简介:

随着患者访问医生的临床笔记变得越来越普遍,将专业的临床术语翻译成通俗易懂的语言对于改善患者临床医生的交流至关重要。通过增强患者对自身健康状况的理解,从而改善患者对自身护理的参与度,这种翻译可产生更好的临床效果。现有研究已经使用基于字典的单词替换或定义插入来满足需要。但是,这些方法受到专家管理的限制,专家管理难以扩展,并且难以推广到不共享重叠词汇的看不见的数据集。相反,我们以完全不受监督的方式处理临床单词和句子翻译问题。我们显示了使用表示学习,双语词典归纳和统计机器翻译的框架,在专业到消费者的单词翻译上,其精度最高,为10的0.827,并且临床正确性和外行可读性的平均意见得分分别为5.10和4.10和4.28。 ,关于句子翻译。我们完全不受监督的策略克服了策展问题,并且具有临床意义的评估减少了不合适的评估者的偏见,而这对于临床机器学习至关重要。

课程简介: As patients’ access to their doctors’ clinical notes becomes common, translating professional, clinical jargon to layperson-understandable language is essential to improve patient-clinician communication. Such translation yields better clinical outcomes by enhancing patients’ understanding of their own health conditions, and thus improving patients’ involvement in their own care. Existing research has used dictionary-based word replacement or definition insertion to approach the need. However, these methods are limited by expert curation, which is hard to scale and has trouble generalizing to unseen datasets that do not share an overlapping vocabulary. In contrast, we approach the clinical word and sentence translation problem in a completely unsupervised manner. We show that a framework using representation learning, bilingual dictionary induction and statistical machine translation yields the best precision at 10 of 0.827 on professional-to-consumer word translation, and mean opinion scores of 4.10 and 4.28 out of 5 for clinical correctness and layperson readability, respectively, on sentence translation. Our fully-unsupervised strategy overcomes the curation problem, and the clinically meaningful evaluation reduces biases from inappropriate evaluators, which are critical in clinical machine learning.
关 键 词: 临床术语; 临床效果; 临床意义
课程来源: 视频讲座网
数据采集: 2020-04-26:zhouxj
最后编审: 2020-05-25:cxin
阅读次数: 78