0


用户粘度:意见论坛趋势跟踪平台

Viscovery: A Platform for Trend Tracking in Opinion Forums
课程网址: http://videolectures.net/kdd2017_ortega_opinion_forums/  
主讲教师: Pablo Ortega
开课单位: 诺瓦维公司
开课时间: 2017-11-01
课程语种: 英语
中文简介:

由于越来越多的用户使用Web 2.0平台来谈论品牌和组织,因此论坛和社交网络中的观点已被数百万人发布。对于企业或政府机构而言,几乎不可能跟踪人们所说的话,从而在用户需求/期望与组织行动之间造成差距。为了弥合这一差距,我们创建了Viscovery,这是一个用于意见汇总和趋势跟踪的平台,能够分析从论坛中回收的意见流。为此,我们使用动态主题模型,可以揭示意见背后主题的隐藏结构,从而表征词汇动态。我们扩展了用于增量学习的动态主题模型,这是Viscovery中几乎实时更新模型的关键方面。此外,我们在Viscovery情绪分析中进行了分析,从而允许以不同的粒度级别将特定主题的肯定/否定词分开。 Viscovery可以可视化每个主题中的代表意见和术语。在粗略的粒度级别上,可以使用2D主题嵌入来分析主题的动态,从而建议纵向主题合并或分割。在本文中,我们报告了我们开发该平台的经验,分享了在实际应用中使用情感分析和主题建模的经验教训和机会。

课程简介: Opinions in forums and social networks are released by millions of people due to the increasing number of users that use Web 2.0 platforms to opine about brands and organizations. For enterprises or government agencies it is almost impossible to track what people say producing a gap between user needs/expectations and organizations actions. To bridge this gap we create Viscovery, a platform for opinion summarization and trend tracking that is able to analyze a stream of opinions recovered from forums. To do this we use dynamic topic models, allowing to uncover the hidden structure of topics behind opinions, characterizing vocabulary dynamics. We extend dynamic topic models for incremental learning, a key aspect needed in Viscovery for model updating in near-real time. In addition, we include in Viscovery sentiment analysis, allowing to separate positive/negative words for a specific topic at different levels of granularity. Viscovery allows to visualize representative opinions and terms in each topic. At a coarse level of granularity, the dynamic of the topics can be analyzed using a 2D topic embedding, suggesting longitudinal topic merging or segmentation. In this paper we report our experience developing this platform, sharing lessons learned and opportunities that arise from the use of sentiment analysis and topic modeling in real world applications.
关 键 词: 用户粘度; Viscovery; 意见汇总; 趋势跟踪; 情绪分析
课程来源: 视频讲座网
数据采集: 2020-05-07:zhouxj
最后编审: 2020-06-11:chenxin
阅读次数: 45