从社会互动的角度模拟疾病传播Modeling Spread of Disease from Social Interactions |
|
课程网址: | http://videolectures.net/icwsm2012_sadilek_interacions/ |
主讲教师: | Adam Sadilek |
开课单位: | 罗切斯特大学 |
开课时间: | 2012-07-06 |
课程语种: | 英语 |
中文简介: | 迄今为止,对计算流行病学的研究主要集中在人口的粗粒度统计分析上,通常是合成人群。相比之下,本文重点关注整个大型现实社会网络中传染病传播的细粒度建模。具体来说,我们研究了社交联系和特定个体之间的互动在传染过程中所扮演的角色。我们专注于Twitter的公开数据,发现每个与健康相关的消息都有1000多个不相关的消息。这种阶级失衡使分类特别具有挑战性。尽管如此,我们提出了一个框架,可以从在线交流的内容中准确识别出患病的人。对250万个带有地理标记的Twitter消息的样本的评估表明,与感染者,有症状患者的社会联系以及近期同居场所的强度,大大增加了人们在不久的将来染上这种疾病的可能性。据我们所知,这项工作是第一个模拟社会活动,人类流动以及传染病在现实世界中大量传播的相互作用的模型。此外,我们提供了在没有积极用户参与的情况下大规模量化疾病传播特征的第一个可量化估计,这使我们能够建模和预测日常人际互动中全球流行病的出现。 p> |
课程简介: | Research in computational epidemiology to date has concentrated on coarse-grained statistical analysis of populations, often synthetic ones. By contrast, this paper focuses on fine-grained modeling of the spread of infectious diseases throughout a large real-world social network. Specifically, we study the roles that social ties and interactions between specific individuals play in the progress of a contagion. We focus on public Twitter data, where we find that for every health-related message there are more than 1,000 unrelated ones. This class imbalance makes classification particularly challenging. Nonetheless, we present a framework that accurately identifies sick individuals from the content of online communication. Evaluation on a sample of 2.5 million geo-tagged Twitter messages shows that social ties to infected, symptomatic people, as well as the intensity of recent co-location, sharply increase one's likelihood of contracting the illness in the near future. To our knowledge, this work is the first to model the interplay of social activity, human mobility, and the spread of infectious disease in a large real-world population. Furthermore, we provide the first quantifiable estimates of the characteristics of disease transmission on a large scale without active user participation---a step towards our ability to model and predict the emergence of global epidemics from day-to-day interpersonal interactions. |
关 键 词: | 流行病学; 统计分析 |
课程来源: | 视频讲座网 |
数据采集: | 2020-09-27:zkj |
最后编审: | 2020-10-22:zyk |
阅读次数: | 40 |