字典学习和天文图像恢复Dictionary Learning and Astronomical Image Restoration |
|
课程网址: | http://videolectures.net/nipsworkshops2011_beckouche_learning/ |
主讲教师: | Simon Beckouche |
开课单位: | 法国替代能源和原子能委员会 |
开课时间: | 2012-01-23 |
课程语种: | 英语 |
中文简介: | 在过去的20年中,小波已被广泛用于天文图像恢复。但是,小波对包含可以在宇宙弦图或行星图像中找到的复杂纹理特征的图像显示出一些限制。我们建议使用最近开发的词典学习技术来克服这些限制。我们在这里解决要从图像中去除高斯白噪声的问题。假定原始图像在去噪期间学习的字典中很少表示。事实证明,斑块平均是结合局部稀疏约束和全局贝叶斯处理的有效方法,与经典的小波收缩和相关技术相比,斑块平均在这里用于处理天体图像。 |
课程简介: | Wavelets have been intensely used for astronomical image restoration during the last 20 years. However, wavelets have shown some limitations for images containing complexe texture features that can find in cosmic string maps or planetary images. We propose to use recently developed dictionary learning techniques to overcome those limitations. We address here the problem where a white gaussian noise is to be removed from an image. The original image is assumed to be sparsly represented in a dictionary which is learned during the denoising. Patch averaging has proven to be an efficient way to combine local sparsity constrain and a global Bayesian treatment and is applied here to process astrophysical image compared to classic wavelet shrinkage and associated techniques. |
关 键 词: | 词典学习与天文图像恢复 |
课程来源: | 视频讲座网 |
数据采集: | 2020-09-28:zkj |
最后编审: | 2020-12-18:yumf |
阅读次数: | 35 |