0


娱乐与创造力的形式理论

Formal Theory of Fun & Creativity
课程网址: http://videolectures.net/ecmlpkdd2010_schmidhuber_ftf/  
主讲教师: Jurgen Schmidhuber
开课单位: 人工智能研究所
开课时间: 2013-12-13
课程语种: 英语
中文简介:
要构建一个永不停止生成非琐碎,新颖和令人惊讶的数据的创意代理,我们需要两个学习模块:(1)随着代理与其环境进行交互,自适应的预测器或不断增长的数据历史的压缩器或模型;以及(2) )一般的强化学习者。 (1)的学习进度是(2)的乐趣或内在奖励。也就是说,(2)的动机是发明(1)尚不知道但可以轻松学习的有趣事物。为了最大化预期的奖励,在没有外部奖励的情况下(2)将创建越来越复杂的行为,这些行为会产生暂时令人惊讶的(但最终是无聊的)模式,从而使(1)迅速改善。我们讨论了该原理如何解释科学与艺术,音乐与幽默,以及如何使用最近用于(1)预测和(2)强化学习的有效方法扩大自1991年以来该理论的先前玩具实现方式。
课程简介: To build a creative agent that never stops generating non-trivial & novel & surprising data, we need two learning modules: (1) an adaptive predictor or compressor or model of the growing data history as the agent is interacting with its environment, and (2) a general reinforcement learner. The LEARNING PROGRESS of (1) is the FUN or intrinsic reward of (2). That is, (2) is motivated to invent interesting things that (1) does not yet know but can easily learn. To maximize expected reward, in the absence of external reward (2) will create more and more complex behaviors that yield temporarily surprising (but eventually boring) patterns that make (1) quickly improve. We discuss how this principle explains science & art & music & humor, and how to scale up previous toy implementations of the theory since 1991, using recent powerful methods for (1) prediction and (2) reinforcement learning.
关 键 词: 学习模块; 复杂行为
课程来源: 视频讲座网
数据采集: 2020-11-03:zyk
最后编审: 2020-12-20:yumf
阅读次数: 52