0


心理广告:赞助搜索中点击预测的消费者心理探索

Psychological Advertising: Exploring Consumer Psychology for Click Prediction in Sponsored Search
课程网址: http://videolectures.net/kdd2013_bian_click_prediction/  
主讲教师: Jiang Bian
开课单位: 微软公司
开课时间: 2013-09-27
课程语种: 英语
中文简介:

精确的点击预测是赞助搜索系统中的关键组成部分之一。先前的研究通常利用两种主要信息来进行点击预测,即,表示广告和查询之间的相似性的相关性信息和表示用户先前对广告的偏好的历史点击信息。这些现有的作品主要着眼于根据用户寻求的内容(即相关性信息)和用户选择的点击方式(历来的浏览信息)来解释广告点击。但是,很少有人试图了解用户为何点击广告。在本文中,我们旨在回答这个``为什么''的问题。我们认为,用户点击那些可以说服他们采取进一步行动的广告,而关键因素是这些广告是否可以触发用户内心的渴望。我们在商业搜索引擎上的数据分析表明,特定的文本模式(例如“官方网站”,“ $ x%$折扣”和“ $ x $天的保证收益”)在以下方面非常有效触发用户的需求,从而导致点击率(CTR)产生巨大差异。这些观察促使我们系统地模拟用户的心理需求,以便对广告点击进行准确的预测。为此,我们建议根据马斯洛的欲望理论在赞助者搜索中对用户的心理欲望进行建模,该理论将心理欲望分为五个级别,每个级别都由一组从广告文字中自动提取的文本模式表示。然后,根据我们对心理需求的定义,为广告和用户构建新颖的功能,并将其纳入点击预测的学习框架。对来自商业搜索引擎的点击后日志进行的大规模评估表明,对于具有丰富历史数据的广告和具有罕见历史数据的广告,此方法都可以大大提高点击预测的准确性。进一步的分析表明,特定的模式组合对于提高点击率特别有效,这为广告客户改善广告文字描述提供了很好的指导。

课程简介: Precise click prediction is one of the key components in the sponsored search system. Previous studies usually took advantage of two major kinds of information for click prediction, i.e., relevance information representing the similarity between ads and queries and historical click-through information representing users' previous preferences on the ads. These existing works mainly focused on interpreting ad clicks in terms of what users seek (i.e., relevance information) and how users choose to click (historically clicked-through information). However, few of them attempted to understand why users click the ads. In this paper, we aim at answering this ``why'' question. In our opinion, users click those ads that can convince them to take further actions, and the critical factor is if those ads can trigger users' desires in their hearts. Our data analysis on a commercial search engine reveals that specific text patterns, e.g., ``official site'', ``$x%$ off'', and ``guaranteed return in $x$ days'', are very effective in triggering users' desires, and therefore lead to significant differences in terms of click-through rate (CTR). These observations motivate us to systematically model user psychological desire in order for a precise prediction on ad clicks. To this end, we propose modeling user psychological desire in sponsored search according to Maslow's desire theory, which categorizes psychological desire into five levels and each one is represented by a set of textual patterns automatically mined from ad texts. We then construct novel features for both ads and users based on our definition on psychological desire and incorporate them into the learning framework of click prediction. Large scale evaluations on the click-through logs from a commercial search engine demonstrate that this approach can result in significant improvement in terms of click prediction accuracy, for both the ads with rich historical data and those with rare one. Further analysis reveals that specific pattern combinations are especially effective in driving click-through rates, which provides a good guideline for advertisers to improve their ad textual descriptions.
关 键 词: 点击预测; 搜索系统
课程来源: 视频讲座网
数据采集: 2020-11-11:zyk
最后编审: 2020-12-15:chenxin
阅读次数: 75