第二定律与能量The Second Law and Energy |
|
课程网址: | http://videolectures.net/mitworld_chu_tcla/ |
主讲教师: | Steven Chu |
开课单位: | 美国能源部 |
开课时间: | 2011-03-05 |
课程语种: | 英语 |
中文简介: | 这位获得诺贝尔奖的科学家承认,在他进行热身热力学的演讲之前,他一直熬夜。他充分利用了他的研究成果,讨论了热力学定律的历史和应用,它是“我们如何利用能源的科学基础,也是工业革命、国家财富的基础”。 以瓦特的1765蒸汽机为例,朱棣文阐述了热力学的基本原理——能量是守恒的,你可以用热来做功,尤其是当你最大限度地利用系统的温差,并将摩擦产生的热量减至最小时。朱棣文提供了另一种形式的法律:你不能赢,你不能收支平衡,你不能离开游戏。 在过去的几个世纪里,游戏并没有发生太大的变化。现在各国都用煤发电,热效率达到40%左右。天然气仍然可以以更高的效率加以利用,如果我们能在锅炉上使用耐温金属,那么浪费的能源就更少了。朱棣文指出,这是一个迫在眉睫的问题,因为地球再也承受不起对碳基燃料的肆意使用。由于二氧化碳排放过多,我们的全球“热机”已经开始朝着不归路的方向倾斜。因此,朱棣文面临的最大问题是科学能否设计出“能够产生可持续(无碳)能源的熵引擎”。 他描述了用改进的太阳能电池捕捉太阳光的努力,但他指出,硅短缺、昂贵的芯片以及摩尔定律所规定的学习曲线意味着该技术在10-15年内不会得到广泛应用,在应对气候变化的战斗中速度不够快。朱棣文喜欢风力发电的效率,但风力机的规模是有限的,美国的高压输电网络需要一个全面而昂贵的改造,以充分利用风能。他建议,忘掉玉米作为生物燃料吧,因为它“在节省的二氧化碳方面几乎是收支平衡的”,而是把重点放在多年生草本植物上,比如芒。朱的实验室和其他人正在寻找能帮助这些植物更容易转化为燃料的微生物。 朱棣文说,另一种潜在的丰富能源包括将太阳光转化为燃料,就像植物进行光合作用一样。但是“大自然是如何分解水的呢?”楚问。科学还没有完全弄清楚把水变成氧和氢的分子机制。朱棣文认为,通过人工光合作用获得生物能源可能意味着从不同的角度考虑熵和其他基本定律。“大自然原来是很好的。” |
课程简介: | This Nobel Prize-winning scientist admits to staying up late the night before his talk to bone up on thermodynamics. He puts his research to good use, discussing the history and application of the laws of thermodynamics, which have served as “the scientific foundation of how we harness energy, and the basis of the industrial revolution, the wealth of nations.” Taking Watt’s 1765 steam engine, Stephen Chu illustrates basic principles of thermodynamics -- that energy is conserved, that you can do work from heat, especially when you maximize the difference in temperature in the system and minimize heat dissipation from friction. Chu offers another form of the laws: You can’t win; you can’t break even; and you can’t leave the game. The game hasn’t changed all that much in the past few centuries. Nations now burn coal for electricity, achieving around 40% thermal efficiency. Natural gas can be harnessed at higher efficiencies still, and if we could deploy temperature-resistant metals for boilers, even less energy would go to waste. This is a pressing matter, points out Chu, because the planet can no longer afford wanton use of carbon-based fuels. With too much CO2, our global “heat engine” has begun to tip toward a point of no return. So the big question for Chu is whether science can design “entropy engines that can generate sustainable (carbon-free) energy sources. He describes efforts to capture sunlight with improved solar cells, but notes that a silicon shortage, expensive chips, and a learning curve dictated by Moore’s law mean the technology won’t be widely deployed for 10-15 years -- not fast enough in the battle against climate change. Chu likes the efficiencies of power generation from wind, but there’s a limit to turbine size, and the U.S. high voltage transmission network needs a complete and expensive makeover to take full advantage of wind. Forget corn as biofuel, he counsels, since it “barely breaks even in terms of CO2 saved,” and focus instead on perennial grasses like miscanthus. Chu’s lab and others are looking for microbes that can help turn these plants more readily into fuels. Another potentially rich energy source, Chu says, involves converting sun light into fuel the way plants do in photosynthesis. But “how does nature split water?” asks Chu. Science hasn’t entirely figured out the molecular machinery that turns water into oxygen and hydrogen. Deriving bioenergy through artificial photosynthesis may mean considering entropy and other basic laws in a different light, Chu suggests. “Nature turns out to be very good.” |
关 键 词: | 能源; 热力应青; 生物燃料 |
课程来源: | 视频讲座网 |
数据采集: | 2020-11-22:yxd |
最后编审: | 2021-09-15:zyk |
阅读次数: | 53 |