第二定律与宇宙学The Second Law and Cosmology |
|
课程网址: | http://videolectures.net/mitworld_tegmark_slc/ |
主讲教师: | Max Tegmark |
开课单位: | 麻省理工学院 |
开课时间: | 2013-07-24 |
课程语种: | 英语 |
中文简介: | 马克斯·泰格马克说,尽管热力学第二定律已经很老了,但它“仍然活跃着”,激发了人们对“真的,非常大的谜题”的研究。在泰格马克的例子中,“大”包含了宇宙,而研究宇宙的熵为理解“我们是如何开始的”提供了一条途径 泰格马克用矛盾的问题来阐述他的演讲:为什么熵这么低,为什么熵这么高?第一个问题是“理解时间之箭的关键”,涉及熵的微观定义。宇宙大爆炸137亿年后,可观测宇宙的熵处于“1089位的棒球场——粗略地说,是一个谷歌。”这远低于我们宇宙所能包含的熵的理论极限。另外,泰格马克想知道,为什么我们的太阳系离热平衡还很远呢,因为当宇宙更年轻的时候,所有地方的温度几乎都是一样的? 结果发现,在宇宙学中,与经典物理学不同,原子开始时的密度是均匀的,最后在重力的推动下,“团块状”,气体密度越来越大,形成恒星。泰格马克展示了这一过程的超级计算机模拟,它描绘了一个宇宙的演化过程,其中包含了像我们这样的星系和太阳系。他说,宇宙中不同的温度并不是因为魔法,只是爱因斯坦的引力理论和基本气体物理。 但是,泰格马克想,为什么宇宙一开始是统一的呢?一个“听起来疯狂的答案”涉及通货膨胀。一个比原子小得多、非常均匀、密度非常高的微小空间区域开始呈指数级膨胀,直到它构成了我们已知的宇宙中的所有空间。变得更奇怪了。泰格马克用膨胀来解释宇宙的低熵,也解释了它的高熵。同样的1089位也可以被视为“如此之大的数字,它表明……我们处于某种多元宇宙中,或者比我们所能观察到的更大的现实中。”构成这10位到89位的初始条件“只是告诉我们我们生活在太空中的什么地方,我们在太空的演讲。“我们应该称之为大爆炸”不是宇宙膨胀的开始,而是这一部分空间通货膨胀的结束。……如果我们缩小宇宙范围,我们应该期待看到更多的熵。“如果你不能凭直觉得到这一点,那没关系,泰格马克向我们保证,但“如果我们仅仅因为科学中的想法感到疯狂就断然拒绝,我们很可能也会拒绝任何正确的理论。” |
课程简介: | In spite of its old age, the Second Law of Thermodynamics “is alive and kicking,” says Max Tegmark, stimulating research on “really, really big puzzles.” In Tegmark’s case, “big” encompasses the cosmos, and investigating the entropy of the universe offers one path into understanding “how we started out.” Tegmark frames his talk with paradoxical questions: Why is entropy so low, and why is entropy so high? The first question is “crucial to understanding the arrow of time,” and involves the microscopic definition of entropy. 13.7 billion years after the Big Bang, entropy in the observable universe is in “the ballpark of 1089 bits -- crudely speaking, a google.” This is much lower than the theoretical limit to how much entropy our cosmos could contain. Also, Tegmark wonders, why has our solar system ended up so far from thermal equilibrium, since when the universe was younger, the temperature was almost the same everywhere? It turns out that in cosmology, unlike classical physics, atoms start out at uniform density and end up, abetted by gravity, “clumpy,” with gas getting denser and forming stars. Tegmark shows a supercomputer simulation of this process, which depicts the evolution of a universe with galaxies and solar systems like our own. Different temperatures in the universe aren’t due to magic, he says, just Einstein’s theory of gravity and basic gas physics. But, Tegmark ponders, why was the universe uniform in the beginning? One “crazy sounding answer” involves inflation. A tiny region of space much smaller than an atom, which is very uniform and very dense, begins to expand exponentially, until it makes up all space in our known universe. It gets weirder. Tegmark invokes inflation to explain not only the low entropy of the cosmos, but its high entropy as well. That same 1089 bits can also be viewed as “such a big number that it suggests…that we’re in some kind of multiverse, or some much larger reality than what we can observe.” The initial conditions that make up these 10 to the 89th bits “just tell us where in space we live, our address in space.” We should call the Big Bang “not the beginning but the end of inflation in this part of space. … If we zoom out in the universe, we should expect to see much more entropy.” If you don’t get this intuitively, that’s OK, Tegmark reassures us, but “if we categorically reject ideas in science just because they feel crazy, we will probably reject whatever the correct theory is, too.” |
关 键 词: | 第二定律; 宇宙学; 熵 |
课程来源: | 视频讲座网 |
数据采集: | 2020-11-30:yxd |
最后编审: | 2021-09-15:zyk |
阅读次数: | 48 |