N点空间统计的有效估计Efficient Estimation of N-point Spatial Statistics |
|
课程网址: | http://videolectures.net/nipsworkshops2011_gray_efficient/ |
主讲教师: | Alexander Gray |
开课单位: | 乔治亚理工学院 |
开课时间: | 2012-06-23 |
课程语种: | 英语 |
中文简介: | 天文数据的精确统计分析是验证复杂现象(如暗物质和暗能量)模型的关键。特别是,大规模天空星表需要空间统计。n点相关函数提供了对任何点过程的完整描述,并被广泛用于理解天文数据。然而,对于N个数据点,估计这些函数的计算成本为N^N。此外,这些昂贵的计算必须在许多不同的尺度上重复多次,以获得相关函数的详细图像并估计其方差。由于天文学测量包含数亿或数十亿个点(并且正在迅速增长),这些计算是不可行的。我们提出了一种新的基于多维树的方法来克服这些计算障碍。我们建立在先前最有效的算法(Gray and Moore,2001,Moore,et al.,2001)的基础上,改进了直接计算的N^N标度。在这项工作中,我们将不同尺度的计算与方差估计直接结合起来。因此,我们可以比目前最先进的方法实现一个数量级的加速。我们在一个模拟星系目录上展示了初步的缩放结果。 |
课程简介: | Precise statistical analyses of astronomical data are the key to validating models of complex phenomena, such as dark matter and dark energy. In particular, spatial statistics are needed for large-scale sky catalogs. The n-point correlation functions provide a complete description of any point process and are widely used to understand astronomical data. However, the computational cost of estimating these functions scales as N^n for N data points. Furthermore, these expensive computations must be repeated many times at many different scales in order to gain a detailed picture of the correlation function and to estimate its variance. Since astronomy surveys contain hundreds of millions or billions of points (and are growing rapidly), these computations are infeasible. We present a new approach based on multidimensional trees to overcome these computational obstacles. We build on the previously most efficient algorithm (Gray and Moore, 2001, Moore, et al., 2001) which improved over the N^n scaling of a direct computation. In this work, we incorporate the computations at different scales along with the variance estimation directly. We can therefore achieve an order of magnitude speedup over the current state-of-the-art method. We show preliminary scaling results on a mock galaxy catalog. |
关 键 词: | 空间统计; 复杂现象; 天文数据 |
课程来源: | 视频讲座网 |
数据采集: | 2020-11-30:yxd |
最后编审: | 2020-11-30:yxd |
阅读次数: | 45 |