词典学习与天文图像恢复Dictionary Learning and Astronomical Image Restoration |
|
课程网址: | http://videolectures.net/nipsworkshops2011_beckouche_learning/ |
主讲教师: | Simon Beckouche |
开课单位: | 法国替代能源和原子能委员会 |
开课时间: | 2012-06-23 |
课程语种: | 汉简 |
中文简介: | 近20年来,小波在天文图像复原中得到了广泛的应用。然而,小波对于包含复杂纹理特征的图像显示出一些局限性,这些纹理特征可以在宇宙弦图或行星图像中找到。我们建议使用最近发展起来的词典学习技术来克服这些局限性。这里我们要解决的是高斯噪声问题。在去噪过程中,假设原始图像在字典中稀疏地表示。与传统的小波收缩和相关技术相比,斑片平均是一种有效的结合局部稀疏性约束和全局贝叶斯处理的方法。 |
课程简介: | Wavelets have been intensely used for astronomical image restoration during the last 20 years. However, wavelets have shown some limitations for images containing complexe texture features that can find in cosmic string maps or planetary images. We propose to use recently developed dictionary learning techniques to overcome those limitations. We address here the problem where a white gaussian noise is to be removed from an image. The original image is assumed to be sparsly represented in a dictionary which is learned during the denoising. Patch averaging has proven to be an efficient way to combine local sparsity constrain and a global Bayesian treatment and is applied here to process astrophysical image compared to classic wavelet shrinkage and associated techniques. |
关 键 词: | 天文图像; 斑块平均; 高斯白噪声 |
课程来源: | 视频讲座网 |
数据采集: | 2020-11-30:yxd |
最后编审: | 2020-11-30:yxd |
阅读次数: | 28 |