用Karhunen-Loeve分析处理剪切图Processing Shear Maps with Karhunen-Loeve Analysis |
|
课程网址: | http://videolectures.net/nipsworkshops2011_vanderplas_processing/ |
主讲教师: | Jacob VanderPlas |
开课单位: | 华盛顿大学 |
开课时间: | 2012-06-23 |
课程语种: | 英语 |
中文简介: | 弱引力透镜的宽场探测器有可能解决有关宇宙本质的基本问题。相关函数、功率谱或剪切峰的统计数据等测量方法可以与理论预测进行比较,从而回答有关暗物质、暗能量、重力和原始扰动性质的实质性问题。然而,由于测量几何、选择函数和其他偏差,数据与理论模型的比较可能会受到系统效应的影响。这可以被定义为一个机器学习问题:给定一组稀疏的噪声观测值,如何才能最好地恢复感兴趣的潜在信号?我们建议使用基于信号的Karhunen-Loeve(KL)模型的压缩感知方法来解决这些挑战。该方法能有效地从噪声数据中恢复剪切信号,且具有任意的掩蔽和测量几何。信噪比排序KL向量允许有效的噪声过滤,导致模拟数据的B模式污染降低30%。此外,由于KL模型是基于协方差矩阵的,它自然地封装了场的两点信息,并为宇宙学切变两点统计的有效贝叶斯似然分析提供了一个框架 |
课程简介: | Wide-field probes of weak gravitational lensing have the potential to address fundamental questions about the nature of the universe. Measures such as the correlation function, power spectrum, or statistics of shear peaks can be compared with theoretical predictions to answer substantive question about the nature of dark matter, dark energy, gravity, and primordial perturbations. Comparison of the data to the theoretical model, however, can be subject to systematic effects due to survey geometry, selection functions, and other biases. This can be framed as a machine learning problem: given a sparse set of noisy observations, how can one best recover the underlying signal of interest? We propose to address these challenges using a compressed-sensing approach based on a Karhunen-Loeve (KL) model of the signal. This approach can efficiently recover the shear signal from noisy data with arbitrary masking and survey geometry. The signal-to-noise-ranked KL vectors allow effective noise filtration, leading to a 30% decrease in B-mode contamination for simulated data. Furthermore, because the KL model is based on covariance matrices, it naturally encapsulates the two-point information of the field and provides a framework for efficient Bayesian likelihood analysis of the two-point statistics of a cosmological shear |
关 键 词: | 弱引力透镜; 信噪比; 机器学习 |
课程来源: | 视频讲座网 |
数据采集: | 2020-11-30:yxd |
最后编审: | 2020-11-30:yxd |
阅读次数: | 54 |