天体统计学中的测量误差Measurement Errors in Astrostatistics |
|
课程网址: | http://videolectures.net/nipsworkshops2011_gray_astrostatistics/ |
主讲教师: | Alexander Gray |
开课单位: | 乔治亚理工学院 |
开课时间: | 2012-06-23 |
课程语种: | 英语 |
中文简介: | 类星体的自动探测是现代天文学中的一个重要问题。基于核密度估计(KDE)的非参数分类技术已被用于开发高精度的类星体检测方法,而使用空间分割树的快速算法使得在大数据集上使用这些方法成为可能(Riegel和Gray,2008)。然而,天文观测伴随着测量误差的估计,这是由于非常不同的误差造成的,例如,在不同的距离上。直到现在,这些估计在类星体探测的KDE方法中被忽略了,尽管它们已经被证明可以提高最近参数方法的精度。如果测量误差独立且分布相同,则用已知的误差分布对密度估计进行反卷积得到无误差分布的估计。然而,当误差大小取决于数据点时(即在异方差误差的情况下),直接反褶积是行不通的。我们将描述一个利用异方差测量误差估计的KDE的扩展,以及一个求相关和的快速算法。我们提供了斯隆数字天空测量数据集的初步结果。 |
课程简介: | Automatic quasar detection is a problem of fundamental importance in modern astronomy. Nonparametric classification techniques based on kernel density estimation (KDE) have been used to develop highly accurate methods of quasar detection, and fast algorithms using space-partitioning trees have made it possible to use these methods on large data sets (Riegel and Gray, 2008). However, astronomical observations come with estimates of measurement errors due to very different inaccuracies, for example, at different distances – and until now, these estimates have been ignored in the KDE approach to quasar detection though they have been demonstrated to improve the accuracy of recent parametric approaches. If the measurement errors are independent and identically distributed, deconvolution of the density estimate with the known error distribution gives an estimate of the error-free distribution. However, when the error magnitude depends on the data point (i.e., in the case of heteroscedastic errors), straightforward deconvolution does not work. We will describe an extension of KDE that makes use of the estimates of heteroscedastic measurement errors, and a fast algorithm for the evaluation of the relevant sums. We present preliminary results on the Sloan Digital Sky Survey data set. |
关 键 词: | 核密度; 参数化方法; 测量误差 |
课程来源: | 视频讲座网 |
数据采集: | 2020-11-30:yxd |
最后编审: | 2020-11-30:yxd |
阅读次数: | 63 |