0


生活在边缘:随机数据凸规划中的相变

Living on the edge: Phase transitions in convex programs with random data
课程网址: http://videolectures.net/sahd2014_tropp_phase_transitions/  
主讲教师: Joel Tropp
开课单位: 加州理工学院
开课时间: 2014-10-29
课程语种: 英语
中文简介:
最近的研究表明,随着约束数目的增加,许多随机约束的凸优化问题会出现相变。例如,这种现象出现在从随机线性测量中识别稀疏向量的'1最小化方法中。事实上,当测量数量超过一个取决于稀疏程度的阈值时,`1方法成功的概率很高;否则,它就很有可能失败。本文提供了第一个严格的分析,解释了为什么相变普遍存在于随机凸优化问题中。它还描述了对过渡的定量方面进行可靠预测的工具,包括过渡区的位置和宽度。将随机规划应用于随机锥约束下的随机规划问题,并将其应用于随机锥约束下的随机问题。应用结果依赖于圆锥几何的基础研究。本文引入了一个概括参数,称为统计维数,它将线性子空间的维数正则地扩展到凸锥类。主要技术结果表明,凸锥的内禀体积序列在统计维数附近急剧集中。这个事实导致了随机旋转的圆锥体与固定圆锥体共享光线的概率的精确界限。
课程简介: Recent research indicates that many convex optimization problems with random constraints exhibit a phase transition as the number of constraints increases. For example, this phenomenon emerges in the `1 minimization method for identifying a sparse vector from random linear measurements. Indeed, the `1 approach succeeds with high probability when the number of measurements exceeds a threshold that depends on the sparsity level; otherwise, it fails with high probability. This paper provides the first rigorous analysis that explains why phase transitions are ubiquitous in random convex optimization problems. It also describes tools for making reliable predictions about the quantitative aspects of the transition, including the location and the width of the transition region. These techniques apply to regularized linear inverse problems with random measurements, to demixing problems under a random incoherence model, and also to cone programs with random affine constraints. The applied results depend on foundational research in conic geometry. This paper introduces a summary parameter, called the statistical dimension, that canonically extends the dimension of a linear subspace to the class of convex cones. The main technical result demonstrates that the sequence of intrinsic volumes of a convex cone concentrates sharply around the statistical dimension. This fact leads to accurate bounds on the probability that a randomly rotated cone shares a ray with a fixed cone.
关 键 词: 约束; 统计维数; 凸优化
课程来源: 视频讲座网
数据采集: 2020-12-07:yxd
最后编审: 2020-12-07:yxd
阅读次数: 48