0


图形马尔可夫模型的系统遗传学

Systems genetics with graphical Markov models
课程网址: http://videolectures.net/ESHGsymposium2016_castelo_systems_geneti...  
主讲教师: Robert Castelo
开课单位: 庞培法布拉大学
开课时间: 2016-07-18
课程语种: 英语
中文简介:
高通量基因组分析仪器提供了细胞内分子同时活动的快照。由此产生的读数,同时获得了基因组中数千种不同功能元件的结果,使得在系统水平上分析细胞通路成为可能。这种分析的一个简单、基本和主要的类型包括独立地评估每个分子剖面在实验条件下的变化。然而,这些数据构成了一个多变量样本,这一事实为我们提供了一个机会,通过研究基因和突变等基因组元素之间的直接和间接影响来收集更多的信息。图马尔可夫模型(GMMs)是图论、机器学习和统计学的交叉点上发展起来的一种合理的方法。在这篇演讲中,我将介绍GMMs和我们最近的工作,如何使用GMMs来研究基因表达的遗传学,qpgraph是我们小组开发的软件。我鼓励观众带上最新版本的R以及生物导体封装的qpgraph安装,试着把谈话中给出的一些例子结合起来。
课程简介: High-throughput genomic profiling instruments provide a snapshot of the simultaneous activity of molecules within cells. The resulting readouts, obtained in parallel for thousands of different functional elements in the genome, have enabled the analysis of cellular pathways at the systems level. A simple, fundamental and primary type of such an analysis consists of assessing changes across experimental conditions independently in each molecular profile. Yet, the fact that these data constitute a multivariate sample conveys the opportunity for us to gather additional insight by examining direct and indirect effects between genome elements such as genes and mutations. Graphical Markov models (GMMs), developed at the crossroads of graph theory, machine learning and statistics, are a sensible approach to pursue this goal. In this talk I will introduce GMMs and our recent work on how to use them to study the genetics of gene expression using the software qpgraph, developed in our group. I encourage the audience to bring along their laptops with the latest version of R and the Bioconductor package qpgraph  installed, to try to work out together some of the examples given during the talk.
关 键 词: 基因组; 细胞; 图形模型
课程来源: 视频讲座网
数据采集: 2020-12-21:yxd
最后编审: 2021-12-20:liyy
阅读次数: 28