0


皮质电图信号中手指屈曲的解剖约束解码

Anatomically Constrained Decoding of Finger Flexion from Electrocorticographic Signals
课程网址: http://videolectures.net/nips2011_ji_fingerflexion/  
主讲教师: Qiang Ji
开课单位: 伦斯勒理工学院
开课时间: 2012-09-06
课程语种: 英语
中文简介:
脑-机接口(BCI)使用大脑信号来传达用户的意图。一些脑机接口方法首先从大脑信号中解码运动参数,然后在没有运动的情况下继续使用这些信号,以允许用户控制输出。最近的研究结果表明,人类大脑表面的皮层电图(ECoG)记录可以提供有关运动参数的信息(例如,手的速度或手指的弯曲)。这些演示中的解码方法通常采用经典的分类/回归算法,在大脑信号和输出之间导出线性映射。然而,它们通常只包含很少的关于目标运动学参数的先验信息。在这篇论文中,我们展示了控制手指屈曲的不同类型的解剖学约束可以在这种情况下加以利用。具体地说,我们将这些约束纳入交换非参数动态系统(SNDS)模型的构造、结构和概率函数中。然后,我们应用得到的SNDS解码器从最近研究中使用的同一个ECoG数据集推断出单个手指的屈曲。我们的结果显示,与先前的研究结果相比,加入解剖约束的该模型的应用改善了解码性能。因此,这篇论文的结果可能最终导致神经控制的手假体与全细粒度手指关节。
课程简介: Brain-computer interfaces (BCIs) use brain signals to convey a user's intent. Some BCI approaches begin by decoding kinematic parameters of movements from brain signals, and then proceed to using these signals, in absence of movements, to allow a user to control an output. Recent results have shown that electrocorticographic (ECoG) recordings from the surface of the brain in humans can give information about kinematic parameters (e.g., hand velocity or finger flexion). The decoding approaches in these demonstrations usually employed classical classification/regression algorithms that derive a linear mapping between brain signals and outputs. However, they typically only incorporate little prior information about the target kinematic parameter. In this paper, we show that different types of anatomical constraints that govern finger flexion can be exploited in this context. Specifically, we incorporate these constraints in the construction, structure, and the probabilistic functions of a switched non-parametric dynamic system (SNDS) model. We then apply the resulting SNDS decoder to infer the flexion of individual fingers from the same ECoG dataset used in a recent study. Our results show that the application of the proposed model, which incorporates anatomical constraints, improves decoding performance compared to the results in the previous work. Thus, the results presented in this paper may ultimately lead to neurally controlled hand prostheses with full fine-grained finger articulation.
关 键 词: 皮质电图信号; 大脑; 脑电记录
课程来源: 视频讲座网
数据采集: 2020-12-28:yxd
最后编审: 2020-12-28:yxd
阅读次数: 39