0


大神经种群中的信息速率与最优译码

Information Rates and Optimal Decoding in Large Neural Populations
课程网址: http://videolectures.net/nips2011_pfau_decoding/  
主讲教师: David Pfau
开课单位: 哥伦比亚大学
开课时间: 2012-09-06
课程语种: 英语
中文简介:
理论神经科学中的许多基本问题都涉及到脉冲神经元群的最优解码和Shannon信息率的计算。在本文中,我们应用统计推断的渐近理论的方法来获得对这些量的更清晰的分析理解。我们发现,对于总信息量有限的大型神经群体,完全尖峰群体响应的信息量与高斯过程中的单个观测值一样渐近,高斯过程的均值和协方差可以用网络和单个神经元的特性来显式描述。这种渐近充分统计量的高斯形式允许我们在某些情况下通过简单的线性变换进行最优的贝叶斯解码,并获得由网络携带的香农信息的闭合形式表达式。该理论的一个技术优势是,它甚至可以很容易地应用于非泊松点过程网络模型;例如,我们发现在某些条件下,具有强历史依赖性(非泊松)效应的神经种群所携带的信息与具有匹配放电率的非相互作用泊松神经元的简单等效种群所携带的信息完全相同。我们认为我们的发现有助于澄清最近有关神经解码和神经假体设计的文献中的一些结果。
课程简介: Many fundamental questions in theoretical neuroscience involve optimal decoding and the computation of Shannon information rates in populations of spiking neurons. In this paper, we apply methods from the asymptotic theory of statistical inference to obtain a clearer analytical understanding of these quantities. We find that for large neural populations carrying a finite total amount of information, the full spiking population response is asymptotically as informative as a single observation from a Gaussian process whose mean and covariance can be characterized explicitly in terms of network and single neuron properties. The Gaussian form of this asymptotic sufficient statistic allows us in certain cases to perform optimal Bayesian decoding by simple linear transformations, and to obtain closed-form expressions of the Shannon information carried by the network. One technical advantage of the theory is that it may be applied easily even to non-Poisson point process network models; for example, we find that under some conditions, neural populations with strong history-dependent (non-Poisson) effects carry exactly the same information as do simpler equivalent populations of non-interacting Poisson neurons with matched firing rates. We argue that our findings help to clarify some results from the recent literature on neural decoding and neuroprosthetic design.
关 键 词: 大神经种群; 神经元; 诊断分析
课程来源: 视频讲座网
数据采集: 2020-12-29:yxd
最后编审: 2020-12-29:yxd
阅读次数: 50