生物信息学概论Introduction to bioinformatics |
|
课程网址: | http://videolectures.net/mlss07_gunnar_intbio/ |
主讲教师: | Gunnar Rätsch |
开课单位: | 马克斯普朗克研究所 |
开课时间: | 2007-08-20 |
课程语种: | 英语 |
中文简介: | 我将首先对生物信息学进行一般性介绍,包括基本生物学,典型数据类型(序列,结构,表达数据和网络)以及已建立的分析任务。在第二部分中,我将讨论使用支持向量机(SVM)进行预测序列分析的问题。我将介绍适用于不同分析任务的一系列内核。此外,我将讨论大规模学习所需的基本数据结构,以及如何将内核组合为异构数据。在第三部分中,我将重点介绍适用于生物信息学中频繁出现的分割任务的隐马尔可夫模型和判别式替代方法,例如条件随机字段和隐马尔可夫SVM。在最后一部分中,我将更详细地介绍三个应用程序:大边距比对算法,计算基因发现以及从重测序阵列中鉴定多态性。 p> |
课程简介: | I will start by giving a general introduction into Bioinformatics, including basic biology, typical data types (sequences, structures, expression data and networks) and established analysis tasks. In the second part, I will discuss the problem of predictive sequence analysis with Support Vector Machines (SVMs). I will introduce a series of kernels suitable for different analysis tasks. Furthermore I will discuss the basic data structures needed for large scale learning and how to combine kernels for heterogeneous data. In the third part, I will focus on Hidden Markov models and discriminative alternatives like Conditional Random Fields and Hidden Markov SVMs suitable for segmentation tasks frequently appearing in Bioinformatics. In the last part I will present three applications in greater detail: A large margin alignment algorithm, computational gene finding and the identification of polymorphisms from resequencing arrays. |
关 键 词: | 生物信息学; 隐马尔可夫模型; 多态性 |
课程来源: | 视频讲座网 |
数据采集: | 2021-02-04:nkq |
最后编审: | 2021-02-04:nkq |
阅读次数: | 51 |