基于知识图的机器学习Machine Learning with Knowledge Graphs |
|
课程网址: | http://videolectures.net/eswc2014_tresp_machine_learning/ |
主讲教师: | Volker Tresp |
开课单位: | 西门子公司 |
开课时间: | 2014-07-30 |
课程语种: | 英语 |
中文简介: | 统计机器学习的大多数成功应用都集中在响应学习或信号反应学习上,其中输出作为对输入的直接响应而产生。一个重要的功能是快速的响应时间,例如在网络上实时投放广告,邮政自动化中的实时地址读取或对生物威胁的快速反应的基础。有人可能会争辩说,如果代理人的世界的复杂性增加,例如,如果代理人需要在复杂的社会共同体中运作,则必须了解有关特定世界实体及其关系的知识。众所周知,在语义Web社区中,有关实体及其关系的知识的一种自然表示是有向标记图,其中节点代表实体,标记链接代表真实事实。最近开发了许多成功的基于图的知识表示形式,例如DBpedia,YAGO或Google Knowledge Graph,它们是从搜索支持到问题解答系统实现的各种应用程序的基础。统计机器学习也可以在知识图中发挥重要作用。通过利用统计关系模式,人们可以预测新事实的可能性,找到实体簇,并确定两个实体是否引用同一个现实世界对象。此外,人们可以分析新实体并将其映射到现有实体(识别)并预测新实体的可能关系。通过首先将知识图转换为三向张量,其中两个模式代表域中的实体,而第三种模式代表关系类型,可以很好地实现这些学习任务。通过使用例如RESCAL方法的张量分解实现一般化。 RESCAL的一个特殊功能是它展示了集体学习,其中信息可以在知识图中传播以支持学习任务。在演示中,将介绍RESCAL方法,并将介绍RESCAL在不同的学习和决策任务中的应用。 p> |
课程简介: | Most successful applications of statistical machine learning focus on response learning or signal-reaction learning where an output is produced as a direct response to an input. An important feature is a quick response time, the basis for, e.g., real-time ad-placement on the Web, real-time address reading in postal automation, or a fast reaction to threats for a biological being. One might argue that knowledge about specific world entities and their relationships is necessary if the complexity of an agent's world increases, for example if an agent needs to function in a complex social community. As one is quite aware in the Semantic Web community, a natural representation of knowledge about entities and their relationships is a directed labeled graph where nodes represent entities and where a labeled link stands for a true fact. A number of successful graph-based knowledge representations, such as DBpedia, YAGO, or the Google Knowledge Graph, have recently been developed and are the basis of applications ranging from the support of search to the realization of question answering systems. Statistical machine learning can play an important role in knowledge graphs as well. By exploiting statistical relational patterns one can predict the likelihood of new facts, find entity clusters and determine if two entities refer to the same real world object. Furthermore, one can analyze new entities and map them to existing entities (recognition) and predict likely relations for the new entity. These learning tasks can elegantly be approached by first transforming the knowledge graph into a 3-way tensor where two of the modes represent the entities in the domain and the third mode represents the relation type. Generalization is achieved by tensor factorization using, e.g., the RESCAL approach. A particular feature of RESCAL is that it exhibits collective learning where information can propagate in the knowledge graph to support a learning task. In the presentation the RESCAL approach will be introduced and applications of RESCAL to different learning and decision tasks will be presented. |
关 键 词: | 机器学习; 语义Web; 标记链接 |
课程来源: | 视频讲座网 |
数据采集: | 2021-03-10:zyk |
最后编审: | 2021-03-11:zyk |
阅读次数: | 78 |