0


基于深度卷积神经网络的图像网络分类

ImageNet Classification with Deep Convolutional Neural Networks
课程网址: http://videolectures.net/machine_krizhevsky_imagenet_classificati...  
主讲教师: Alex Krizhevsky
开课单位: 多伦多大学
开课时间: 2013-01-14
课程语种: 英语
中文简介:

我们训练了一个大型的深度卷积神经网络,以将LSVRC 2010 ImageNet训练中的130万个高分辨率图像分类为1000个不同的类。在测试数据上,我们实现了前1个和前5个错误率分别为39.7%和18.9%,这比以前的最新技术水平要好得多。该神经网络具有6000万个参数和500,000个神经元,由五个卷积层组成,其中一些跟在最大池化层之后,还有两个全局连接层,最后一个1000路softmax。为了使训练更快,我们使用了非饱和神经元和卷积网的非常高效的GPU实现。为了减少全局连接层中的过度拟合,我们采用了一种新的正则化方法,该方法被证明是非常有效的。

课程简介: We trained a large, deep convolutional neural network to classify the 1.3 million high-resolution images in the LSVRC-2010 ImageNet training set into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 39.7% and 18.9% which is considerably better than the previous state-of-the-art results. The neural network, which has 60 million parameters and 500,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and two globally connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of convolutional nets. To reduce overfitting in the globally connected layers we employed a new regularization method that proved to be very effective.
关 键 词: 神经网络; 图像分辨
课程来源: 视频讲座网
数据采集: 2021-03-20:zyk
最后编审: 2021-03-20:zyk
阅读次数: 136