利用机器人科学家实现生物自动化Automating Biology Using Robot Scientists |
|
课程网址: | http://videolectures.net/aaai2012_king_robot_scientists/ |
主讲教师: | Ross D. King |
开课单位: | 曼彻斯特大学 |
开课时间: | 2011-09-28 |
课程语种: | 英语 |
中文简介: | 自计算机问世以来,科学家和作家就已经想到了可以在广泛的人类知识领域直接,准确地回答人们的问题的计算机系统。开放域问答具有极大的希望,可以促进对大量自然语言内容的明智决策。商业智能,医疗保健,客户支持,企业知识管理,社交计算,科学和政府中的应用都将受益于深度语言处理。 DeepQA项目旨在探索和整合自然语言处理,信息检索,机器学习,大规模并行计算以及知识表示和推理如何极大地促进开放域自动问答。应对这一挑战的一个令人兴奋的证明是,开发一种可以在“危险区”成功与顶尖人类玩家竞争的计算机系统!猜谜节目。达到冠军水平的危险!需要计算机系统快速准确地回答丰富的开放域问题,并预测其在任何给定类别/问题上的表现。该系统必须在3秒钟的响应时间内,在非常广泛的知识和自然语言内容范围内提供高度的准确性和可信度。为此,DeepQA证明并评估了许多相互竞争的假设。成功的关键是自动学习并结合一系列复杂算法和不同维度证据中的准确依据。需要准确的信心才能知道什么时候该“与对手竞争”,以及要下多少赌注。高精度和准确的置信度计算对于在业务设置中提供真实价值至关重要,在商业设置中,帮助用户更快地专注于正确的内容以及更大的置信度可以使一切有所不同。对速度和高精度的需求要求一个大型并行计算平台,该平台必须能够生成,评估和组合成千上万的假设及其相关证据。在本次演讲中,我将向观众介绍《危险》!挑战以及我们如何使用DeepQA应对挑战。 p> |
课程简介: | Computer systems that can directly and accurately answer peoples’ questions over a broad domain of human knowledge have been envisioned by scientists and writers since the advent of computers themselves. Open domain question answering holds tremendous promise for facilitating informed decision making over vast volumes of natural language content. Applications in business intelligence, healthcare, customer support, enterprise knowledge management, social computing, science and government would all beneit from deep language processing. The DeepQA project is aimed at exploring how advancing and integrating natural language processing, information retrieval, machine learning, massively parallel computation, and knowledge representation and reasoning can greatly advance open-domain automatic question answering. An exciting proof-point in this challenge is to develop a computer system that can successfully compete against top human players at the Jeopardy! quiz show. Attaining champion-level performance Jeopardy! requires a computer system to rapidly and accurately answer rich open-domain questions, and to predict its own performance on any given category/question. The system must deliver high degrees of precision and conidence over a very broad range of knowledge and natural language content with a 3-second response time. To do this DeepQA evidences and evaluates many competing hypotheses. A key to success is automatically learning and combining accurate conidences across an array of complex algorithms and over different dimensions of evidence. Accurate conidences are needed to know when to “buzz in” against your competitors and how much to bet. High precision and accurate conidence computations are just as critical for providing real value in business settings where helping users focus on the right content sooner and with greater conidence can make all the difference. The need for speed and high precision demands a massively parallel computing platform capable of generating, evaluating and combing 1000s of hypotheses and their associated evidence. In this talk I will introduce the audience to the Jeopardy! Challenge and how we tackled it using DeepQA. |
关 键 词: | 计算机; 信息检索; 机器学习 |
课程来源: | 视频讲座网 |
数据采集: | 2021-05-08:zyk |
最后编审: | 2021-05-08:zyk |
阅读次数: | 40 |