0


学习时间序列Shapelets

Learning Time-Series Shapelets
课程网址: http://videolectures.net/kdd2014_grabocka_shapelets/  
主讲教师: Josif Grabocka
开课单位: 希尔德斯海姆大学
开课时间: 2014-10-07
课程语种: 英语
中文简介:

波形图是时间序列的可区分子序列,可以最好地预测目标变量。由于这个原因,最近在时间序列研究领域中,shapelet发现引起了相当大的兴趣。当前,通过评估从系列片段中提取的众多候选对象的预测质量来找到小形。与现有技术相反,本文从学习形状方面提出了一种新颖的观点。提出了一种新的通过分类目标函数对任务进行数学形式化的方法,并采用了一种定制的随机梯度学习算法。所提出的方法使得能够直接学习接近最佳形状的形状,而无需尝试大量的候选对象。此外,我们的方法可以通过捕获真实的前K个形状来学习它们之间的相互作用。大量的实验表明,在28个时间序列数据集中,相对于13个基准而言,获胜和排名的改善具有统计学意义。

课程简介: Shapelets are discriminative sub-sequences of time series that best predict the target variable. For this reason, shapelet discovery has recently attracted considerable interest within the time-series research community. Currently shapelets are found by evaluating the prediction qualities of numerous candidates extracted from the series segments. In contrast to the state-of-the-art, this paper proposes a novel perspective in terms of learning shapelets. A new mathematical formalization of the task via a classification objective function is proposed and a tailored stochastic gradient learning algorithm is applied. The proposed method enables learning near-to-optimal shapelets directly without the need to try out lots of candidates. Furthermore, our method can learn true top-K shapelets by capturing their interaction. Extensive experimentation demonstrates statistically significant improvement in terms of wins and ranks against 13 baselines over 28 time-series datasets.
关 键 词: 预测目标变量; 梯度学习算法; 时间序列数据集; 分类目标函数
课程来源: 视频讲座网
数据采集: 2021-05-27:zyk
最后编审: 2021-05-27:zyk
阅读次数: 198