非线性动力学Non-Linear Dynamics |
|
课程网址: | http://videolectures.net/NTUcomplexity2017_connaughton_non_linear... |
主讲教师: | Colm Connaughton |
开课单位: | 华威大学 |
开课时间: | 2017-04-03 |
课程语种: | 英语 |
中文简介: | 对于许多非专业人士来说,非线性、混沌和复杂性的概念在科学话语中经常被混淆在一起。实际上,混沌只是在非线性动力系统中观察到的丰富的重要现象之一。本讲座将对非线性动力学的一些关键概念进行非数学介绍,并试图阐明它们与复杂性科学的关系。我们将首先讨论为什么非线性是重要和通用的,以及为什么具有少量变量的非线性动力系统有助于对具有大量变量的复杂系统进行建模。然后,我们将通过生态和流行病学建模中的一些说明性示例来解释相空间、轨迹和不动点的关键思想。然后我们将介绍不动点稳定性的概念。这很重要,因为稳定不动点是吸引子的最简单示例:相空间中的结构决定了动态系统的典型长时间行为。更有趣的吸引子例子包括周期循环和与混沌动力学相关的奇怪吸引子。讲座的最后一部分将讨论分岔,这是非线性科学中最重要的概念之一。分岔是动态系统的吸引子的结构或稳定性随着外部参数的变化而发生的变化。分岔很重要,因为它们与动态系统的典型长期行为的质变有关。我们将尝试说明不同类型的分岔如何与基本非线性现象相关联,例如临界点、多重稳定性、滞后和非线性振荡的出现。 |
课程简介: | For many non-specialists, notions of nonlinearity, chaos and complexity are often blurred together in scientific discourse. In reality, chaos is only one of a rich set of important phenomena observed in nonlinear dynamical systems. This lecture will provide a non-mathematical introduction to some of the key concepts of nonlinear dynamics and try to clarify how they relate to complexity science. We will begin by discussing why nonlinearity is important and generic and why nonlinear dynamical systems with a small number of variables are helpful in modelling complex systems with large numbers of variables. We will then explain the key ideas of phase space, trajectories and fixed points with some illustrative examples from ecological and epidemiological modelling. We will then introduce the notion of stability of fixed points. This is important because stable fixed points are the simplest examples of attractors: structures in phase space that determine the typical long-time behaviour of a dynamical system. More interesting examples of attractors include periodic cycles and the strange attractors associated with chaotic dynamics. The final part of the lecture will discuss bifurcations, one of the most important concepts in nonlinear science. A bifurcation is a change in the structure or stability of the attractor(s) of a dynamical system as an external parameter is varied. Bifurcations are important because they are associated with qualitative changes in the typical long-time behaviour of a dynamical system. We will try to illustrate how different types of bifurcations are connected to essentially nonlinear phenomena like tipping points, multi-stability, hysteresis and emergence of nonlinear oscillations. |
关 键 词: | 非线性动力系统; 周期循环; 多重稳定性 |
课程来源: | 视频讲座网 |
数据采集: | 2021-07-02:liyy |
最后编审: | 2021-07-02:liyy |
阅读次数: | 248 |