首页泛函分析
   首页数学
0


随机演化博弈中的均衡转移

Equilibrium Transitions in Stochastic Evolutionary Games
课程网址: http://videolectures.net/eccs07_miekisz_ets/  
主讲教师: Jacek Miekisz
开课单位: 华沙大学
开课时间: 2007-11-26
课程语种: 英语
中文简介:

我们分析了随机动力学在混合良好的种群和具有局部相互作用的空间博弈中的长期行为。我们回顾了有关参与者数量和噪声水平对纳什均衡随机稳定性影响的结果。为了解决多玩家空间博弈中的均衡选择问题,我们引入了集成稳定性的概念。标准随机稳定性描述了系统在零噪声限制内具有固定数量的参与者的长期运行行为。相反,整体稳定性与在无限玩家数量限制下的固定(但仍然很低)噪声水平有关。我们提供了一些游戏示例,其中当玩家数量增加或噪音水平降低时,人口会在其均衡之间发生转变。特别是,如果噪声水平低且参与者数量足够大,则可能出现长期随机稳定的风险主导和帕累托有效策略以任意小概率进行游戏。

课程简介: We analyze the long-run behaviour of stochastic dynamics in well-mixed populations and in spatial games with local interactions. We review results concerning the effect of the number of players and the noise level on the stochastic stability of Nash equilibria. To address the problem of equilibrium selection in spatial games with many players, we introduce a concept of ensemble stability. The standard stochastic stability describes a long-run behaviour of systems with a fixed number of players in the zero-noise limit. On the contrary, the ensemble stability is concerned with a fixed (but nevertheless low) noise level in the limit of the infinite number of players. We present examples of games in which when the number of players increases or the noise level decreases, a population undergoes a transition between its equilibria. In particular, it may happen that a risk-dominant and Pareto-efficient strategy, which is stochastically stable, in the long run is played with an arbitrarily small probability if the noise level is low and the number of players is big enough.
关 键 词: 纳什均衡; 空间博弈; 帕累托
课程来源: 视频讲座网
数据采集: 2021-07-15:nkq
最后编审: 2021-07-15:nkq
阅读次数: 57