链路发现地理空间距离的兰花缩减比优化计算ORCHID - Reduction-Ratio-Optimal Computation of Geo-Spatial Distances for Link Discovery |
|
课程网址: | http://videolectures.net/iswc2013_ngonga_ngomo_orchid/ |
主讲教师: | Axel-Cyrille Ngonga Ngomo |
开课单位: | 莱比锡大学 |
开课时间: | 2013-11-28 |
课程语种: | 英语 |
中文简介: | 发现知识库中资源之间的链接对于实现语义网的愿景至关重要。 在处理地理空间数据集时,由于其庞大的规模和单个地理空间对象的潜在复杂性,解决这一任务尤其具有挑战性。 然而,到目前为止,在链接发现的背景下,很少有人关注地理空间数据的特征。 在本文中,我们提出了一种专为地理空间数据设计的缩减率最优的链路发现方法--兰花(Orchid),以解决这一问题。 兰花依赖于Hausdorff度量和顺向度量的组合来计算地理空间对象之间的距离。 我们首先提出了两种有效计算Hausdorff距离的新方法。 然后,我们给出了用兰花实现的空间平铺方法,并证明了该方法在所能达到的缩小比方面是最优的。 在三个不同大小和复杂度的真实数据集上对我们的方法进行了评估。 我们的结果表明,我们计算Hausdorff距离的方法需要比地理数据小两个数量级的顺序距离计算。 此外,它们实现这一目标所需的时间比幼稚的方法少两个数量级。 最后,我们的结果表明,兰花可以扩展到大型数据集,同时显著超过最先进的水平。 |
课程简介: | The discovery of links between resources within knowledge bases is of crucial importance to realize the vision of the Semantic Web. Addressing this task is especially challenging when dealing with geo-spatial datasets due to their sheer size and the potential complexity of single geo-spatial objects. Yet, so far, little attention has been paid to the characteristics of geo-spatial data within the context of link discovery. In this paper, we address this gap by presenting Orchid, a reduction-ratio-optimal link discovery approach designed especially for geo-spatial data. Orchid relies on a combination of the Hausdorff and orthodromic metrics to compute the distance between geo-spatial objects. We first present two novel approaches for the efficient computation of Hausdorff distances. Then, we present the space tiling approach implemented by Orchid and prove that it is optimal with respect to the reduction ratio that it can achieve. The evaluation of our approaches is carried out on three real datasets of different size and complexity. Our results suggest that our approaches to the computation of Hausdorff distances require two orders of magnitude less orthodromic distances computations to compare geographical data. Moreover, they require two orders of magnitude less time than a naive approach to achieve this goal. Finally, our results indicate that Orchid scales to large datasets while outperforming the state of the art significantly. |
关 键 词: | 语义网; 地理空间数据集; 链路 |
课程来源: | 视频讲座网 |
数据采集: | 2021-10-05:zkj |
最后编审: | 2021-10-15:zkj |
阅读次数: | 46 |