贝叶斯高斯过程潜变量模型Bayesian Gaussian process latent variable model |
|
课程网址: | http://videolectures.net/aistats2010_titsias_bgp/ |
主讲教师: | Michalis K. Titsias |
开课单位: | 曼彻斯特大学 |
开课时间: | 2010-06-03 |
课程语种: | 英语 |
中文简介: | 我们引入变分推理框架来训练高斯过程潜变量模型,从而进行贝叶斯非线性降维。这种方法允许我们变分地积分高斯过程的输入变量,并计算非线性潜变量模型的精确边际似然的下界。变分下界的最大化提供了贝叶斯训练过程,该过程对过度拟合是鲁棒的并且可以自动选择非线性潜在空间的维数。我们在真实世界数据集上演示了我们的方法。本文的重点是降维问题,但方法更为通用。例如,我们的算法可立即应用于在存在丢失或不确定输入的情况下训练高斯过程模型。 |
课程简介: | We introduce a variational inference framework for training the Gaussian process latent variable model and thus performing Bayesian nonlinear dimensionality reduction. This method allows us to variationally integrate out the input variables of the Gaussian process and compute a lower bound on the exact marginal likelihood of the nonlinear latent variable model. The maximization of the variational lower bound provides a Bayesian training procedure that is robust to overfitting and can automatically select the dimensionality of the nonlinear latent space. We demonstrate our method on real world datasets. The focus in this paper is on dimensionality reduction problems, but the methodology is more general. For example, our algorithm is immediately applicable for training Gaussian process models in the presence of missing or uncertain inputs. |
关 键 词: | 变分推理; 贝叶斯非线性; 降维问题 |
课程来源: | 视频讲座网 |
最后编审: | 2020-05-22:王淑红(课程编辑志愿者) |
阅读次数: | 402 |