非音乐媒体中的音乐母题发现Musical Motif Discovery in Non-musical Media |
|
课程网址: | http://videolectures.net/iccc2014_ventura_musical_discovery/ |
主讲教师: | Dan Ventura |
开课单位: | 杨百翰大学 |
开课时间: | 2014-08-08 |
课程语种: | 英语 |
中文简介: | 许多音乐合成算法试图以特定的风格合成音乐。由此产生的音乐往往令人印象深刻,与训练数据的风格无法区分,但往往缺乏重大创新。为了增加音高和节奏选择的创新,我们提出了一个系统,通过将机器学习技术与鼓舞人心的成分相结合来发现音乐主题。与许多生成模型不同,灵感成分允许作文过程来源于从训练数据中学到的知识之外。候选主题是从非音乐媒体(如图像和音频)中提取的。机器学习算法选择并返回与训练数据最相似的模式。这一过程通过在实际乐谱上运行并测试发现的主题与预期主题的匹配程度来验证。我们通过比较发现基序、候选基序和训练数据的熵来检验发现基序的信息含量。我们通过比较训练数据的概率和模型中发现的模体的概率来衡量创新。 |
课程简介: | Many music composition algorithms attempt to compose music in a particular style. The resulting music is often impressive and indistinguishable from the style of the training data, but it tends to lack significant innovation. In an effort to increase innovation in the selection of pitches and rhythms, we present a system that discovers musical motifs by coupling machine learning techniques with an inspirational component. Unlike many generative models, the inspirational component allows the composition process to originate outside of what is learned from the training data. Candidate motifs are extracted from non-musical media such as images and audio. Machine learning algorithms select and return the motifs that most resemble the training data. This process is validated by running it on actual music scores and testing how closely the discovered motifs match the expected motifs. We examine the information content of the discovered motifs by comparing the entropy of the discovered motifs, candidate motifs, and training data. We measure innovation by comparing the probability of the training data and the probability of the discovered motifs given the model. |
关 键 词: | 音乐合成算法; 训练数据; 非音乐媒体 |
课程来源: | 视频讲座网 |
数据采集: | 2021-10-26:zkj |
最后编审: | 2021-10-26:zkj |
阅读次数: | 61 |