人工神经网络和多维分类方法:人类齿状核神经元的二维图像Artificial neural networks and multidimensional approach in the classification: 2D images of neurons from the human dentate nucleus |
|
课程网址: | http://videolectures.net/biophysics2018_milosevic_neural_networks... |
主讲教师: | Nebojša T Milošević |
开课单位: | 贝尔格莱德大学 |
开课时间: | 2018-07-09 |
课程语种: | 英语 |
中文简介: | 导言:人类齿状核神经元根据其形态分为四种类型(1),根据其拓扑结构分为两种类型(2)。因此,本研究有两个主要目的:i)验证或改进先前的分类,ii)研究边缘神经元是否表达相同的特征或它们属于不同的形态类型(3)。材料和方法:测量15个参数,量化神经元形态的四个方面(整个神经元的表面积和形状、树突长度和分支复杂性)(1)。使用神经网络和多维方法研究分类方案(3)。结果:神经网络的使用并没有证实先前对中央和边缘细胞的分类,但它根据胞体面积和树突长度显示了四种神经元类型。进一步分析表明,两种边界神经元之间存在显著差异,主要表现在量化树突分支复杂性和树突长度的参数上。所有方法学方法都显示出轻微的数据聚类:聚类分析显示两个数据聚类,单独的单因素分析显示聚类间的差异。判别分析和相关比较分析进一步以更具连贯性的方式证明和解释了结果。结论:人齿状核神经元按其数量特征可分为四种类型。边界神经元可分为两种不同的拓扑类型。进一步讨论了获得的神经元差异与小脑网络结构和功能的关系。 (1) 格巴蒂尼一世、马里奇德尔、米洛舍维奇。成人齿状核神经元:神经元分类中的神经网络。J Theor Biol。2015; 370: 11-20. (2) MarićD.成人齿状核神经元形态学的定性和定量分析(博士论文)。医学院,诺维萨德大学,塞尔维亚,Balkans,2010。(3) 格巴蒂尼一世,米洛舍维奇。成人齿状核边缘神经元的分类:人工神经网络和多维方法。J Theor Biol。2016; 404: 273-284. |
课程简介: | Introduction: Neurons in the human dentate nucleus are classified into four types according to their morphology (1) and into two types according to their topology (2). Thus this study have two major aims: i) verify or improve previous classification and ii) investigate whether border neurons express the same features or they belong to a different morphological types (3). Material and Methods: Fifteen parameters quantifying four aspects of neuron morphology (surface area and shape of whole neuron, dendritic length and branching complexity) were measured (1). Classification scheme was investigated using neural networks and multidimensional approach (3). Results: The use of neural network didn’t confirm the previous classification on central and border cells, but it showed four neuronal types, based on soma area and dendritic length. Further analysis showed significant differences between two types of border neurons, mainly in parameters which quantify dendritic branching complexity and dendritic length. All methodological approaches demonstrated slight clustering of data: cluster analysis showed two data clusters and separate unifactor analysis indicated inter-cluster differences. Discriminant and correlation-comparison analysis further proved and explained the result on a more cohesive manner. Conclusion: Human dentate nucleus neurons can be classified into four neuron types, according to their quantitative properties. Border neurons can be divided into two different topological types. The obtained neuronal differences were discussed further in relation to the structure and function of the cerebellar network. (1) Grbatinić I, Marić DL, Milošević NT. Neurons from the adult human dentate nucleus: neural networks in the neuron classification. J Theor Biol. 2015; 370: 11-20. (2) Marić D. Qualitative and quantitative analysis of adult human dentate nucleus neurons morphology (Ph.D. thesis). Medical faculty, University of Novi Sad, Serbia, Balkans, 2010. (3) Grbatinić I, Milošević NT. Classification of adult human dentate nucleus border neurons: artificial neural networks and multidimensional approach. J Theor Biol. 2016; 404: 273-284. |
关 键 词: | 人类齿状核神经元; 神经网络; 人工神经网络和多维方法 |
课程来源: | 视频讲座网 |
数据采集: | 2021-11-05:zkj |
最后编审: | 2021-11-05:zkj |
阅读次数: | 52 |