首页数学
   首页自然科学
0


三维曲面附近层电位的平方误差估计

Quadrature error estimates for layer potentials evaluated near curved surfaces in three dimensions
课程网址: http://videolectures.net/8ecm2021_karin_tornberg/  
主讲教师: Anna-Karin Tornberg
开课单位: KTH-皇家理工学院
开课时间: 2021-07-06
课程语种: 英语
中文简介:
当数值求解重新表示为积分方程的偏微分方程时,必须计算所谓的层电位。当评估点接近表面且积分几乎奇异时,与用于评估层电位的规则求积规则相关联的求积误差迅速增加。当精度不足时,需要进行误差估计,应使用更昂贵的特殊求积方法。在本讲座中,我们首先考虑平面曲线上的积分,使用涉及轮廓积分、剩余演算和分支切割的复杂分析来推导此类误差估计。我们首先得到了r2中层势的误差估计,对于层势的复公式和实公式,对于高斯-勒让德规则和梯形规则。通过使参数平面复杂化,该理论也可用于推导R3中曲线的估计值。然后将这些结果用于推导曲面上积分的估计。我们得到的估计没有未知系数,并且可以在给定曲面离散化的情况下,调用局部一维寻根程序,有效地进行评估。给出了许多例子来说明正交误差估计的性能。在许多情况下,曲线上积分的估计非常精确,因此,R3中曲线曲面的估计足够精确,计算成本足够低,具有实用价值。
课程简介: When numerically solving PDEs reformulated as integral equations, so called layer potentials must be evaluated. The quadrature error associated with a regular quadrature rule for evaluation of a layer potential increases rapidly when the evaluation point approaches the surface and the integral becomes nearly singular. Error estimates are needed to determine when the accuracy is insufficient and a more costly special quadrature method should be utilized. In this talk, we start by considering integrals over curves in the plane, using complex analysis involving contour integrals, residue calculus and branch cuts, to derive such error estimates. We first obtain error estimates for layer potentials in R 2 , for both complex and real formulations of layer potentials, both for the Gauss-Legendre and the trapezoidal rule. By complexifying the parameter plane, the theory can be used to derive estimates also for curves in in R 3 . These results are then used in the derivation of the estimates for integrals over surfaces. The estimates that we obtain have no unknown coefficients and can be efficiently evaluated given the discretization of the surface, invoking a local one-dimensional root-finding procedure. Numerical examples are given to illustrate the performance of the quadrature error estimates. The estimates for integration over curves are in many cases remarkably precise, and the estimates for curved surfaces in R 3 are also sufficiently precise, with sufficiently low computational cost, to be practically useful.
关 键 词: 偏微分方程; 评估点; 求积规则
课程来源: 视频讲座网
数据采集: 2021-11-22:nkq
最后编审: 2021-11-22:nkq
阅读次数: 65