高效的内核对视觉单词,通过明确的反对Efficient Kernels Couple Visual Words Through Categorical Opponency |
|
课程网址: | http://videolectures.net/bmvc2012_alexiou_categorical_opponency/ |
主讲教师: | Ioannis Alexiou |
开课单位: | 伦敦帝国学院 |
开课时间: | 2012-10-09 |
课程语种: | 英语 |
中文简介: | 最近在用于对象识别和场景分类的视觉词袋(BOVW)方法的稀疏字典方面取得了进展。特别地,联合编码的单词已经被证明通过改善字典稀疏性(其影响检索的效率)和提高分类的选择性而极大地增强了检索和分类性能。在本文中,我们建议并评估“软配对”的不同功能。单词,其中配对的可能性受推定单词对的接近度和规模的影响。这些方法在Caltech-101数据库和Pascal VOC 2007和2011数据库中进行评估。使用BOVW描述,标准BOVW方法以及配对函数的不同参数值将结果与空间金字塔进行比较。我们还在此上下文中比较了密集和基于关键点的方法。一个结论是,单词配对提供了一种方法,可以在不需要聚类的计算工作的情况下获得更大字典大小的性能。这使其适用于必须经常重新学习字典或图像统计频繁变化的情况。 |
课程简介: | Recent progress has been made on sparse dictionaries for the Bag-of-Visual-Words (BOVW) approach to object recognition and scene categorization. In particular, jointly encoded words have been shown to greatly enhance retrieval and categorization performance by both improving dictionary sparsity, which impacts efficiency of retrieval, and improving the selectivity of categorization. In this paper, we suggest and evaluate different functions for the “soft-pairing” of words, whereby the likelihood of pairing is influenced by proximity and scale of putative word pairs. The methods are evaluated in both the Caltech-101 database and the Pascal VOC 2007 and 2011 databases. The results are compared against spatial pyramids using BOVW descriptions, standard BOVW approaches, and across different parameter values of pairing functions. We also compare dense and keypoint-based approaches in this context. One conclusion is that word pairing provides a means towards attaining the performance of much larger dictionary sizes without the computational effort of clustering. This lends it to situations where the dictionaries must be frequently relearned, or where image statistics frequently change. |
关 键 词: | 视觉词袋; 场景分类; 软配对 |
课程来源: | 视频讲座网 |
最后编审: | 2020-09-25:yumf |
阅读次数: | 79 |