神经影像学中的因果推理简介An introduction to causal inference in neuroimaging |
|
课程网址: | http://videolectures.net/bbci2014_grosse_wentrup_causal_inference... |
主讲教师: | Moritz Grosse-Wentrup |
开课单位: | 马克斯·普朗克研究所 |
开课时间: | 2014-04-03 |
课程语种: | 英语 |
中文简介: | 近年来,各种因果推理方法被引入到神经影像学中,包括因果贝叶斯网络、动态因果建模(DCM)、格兰杰因果关系和线性非高斯非循环模型(LINGAM)。虽然所有这些方法的目的都是为了深入了解大脑过程是如何相互作用的,但它们是基于完全不同的因果关系概念。在本次演讲中,我将回顾每种方法的理论基础,描述其固有假设,并讨论神经成像数据分析和解释的结果。 |
课程简介: | A variety of causal inference methods has been introduced to neuroimaging in recent years, including Causal Bayesian Networks, Dynamic Causal Modeling (DCM), Granger Causality, and Linear Non-Gaussian Acyclic Models (LINGAM). While all these methods aim to provide insights into how brain processes interact, they are based on rather different concepts of causality. In this talk, I will review the theoretical foundations of each of these methods, describe their inherent assumptions, and discuss the resulting consequences for the analysis and interpretation of neuroimaging data. |
关 键 词: | 神经影像学; 因果贝叶斯网络; 动态因果建模; 格兰杰因果关系; 线性非高斯非循环模型 |
课程来源: | 视频讲座网 |
数据采集: | 2021-11-26:zkj |
最后编审: | 2021-11-26:zkj |
阅读次数: | 86 |