纳米光子学:发现纳米结构中光的魔力Nanophotonics: Discovering the Magic of Light in Nanostructures |
|
课程网址: | http://videolectures.net/mitworld_hu_magic/ |
主讲教师: | Evelyn Hu |
开课单位: | 哈佛大学 |
开课时间: | 2014-01-06 |
课程语种: | 英语 |
中文简介: | 伊芙琳·胡(Evelyn Hu)仔细描述了如何利用纳米元件设计和制造新一代光学材料。她希望利用“纳米结构中光的魔力” 胡女士完成了探索和开发不同光学材料特性的研究。她首先列举了光学材料最重要的方面,如颜色(发射和吸收波长);高效转换能量的能力;当受到刺激时,它保持兴奋的时间有多长;以及我们是否“产出大于投入” 胡在自然界中寻找光学材料,然后在其上叠加另一种图案,在原子水平上对其进行实质性的改变。在一个案例中,她使用了波长约为一个波长的砷化镓,并在其上戳出如此微小的孔,使得光子在遇到结构时表现出不同的行为。正如胡所说,“我正在为光子塑造一个特殊的环境。”她的砷化镓纳米结构包含一个微小的空腔或“最佳点”,它可以产生一个高强度的电磁场,以特定的方式与光子和原子相互作用。每个结构都有唯一的光学特征。胡将其比作风琴管,一种声学谐振器,由于其独特的几何结构,当空气通过它时,它会产生不同的音调。 胡继续描述了纳米结构如何与简单的低能高能电子态协同工作,以及腔如何影响原子,从而在电子态和光子态之间建立一种关系,她称之为“弱耦合”。胡还一直在混合物质和光,以创造新的量子态。她描述说,将一个原子精确地放置在最佳位置,激发它释放光子,改变光子的状态并再次刺激原子:“如果我完全正确地执行此过程……我们几乎可以永远在环境和原子之间传递能量。” 为了达到最佳效果,原子和光子的行为必须是可预测的,并按照它们的指示进行。为了实现这一点,胡和他的同事们制作了50埃宽的半导体量子点作为可调谐光发射器,并制作了带有电子束蚀刻图案的光子晶体膜。胡发现她可以在纳米环境中越来越精确地控制和操纵光子的释放,创造新的量子力学状态,并对光的本质产生“更强大的影响”。胡总结说,这项工作“对处理信息有着深远的影响” |
课程简介: | Evelyn Hu meticulously describes designing and building a new generation of optical materials from nano-sized elements. She hopes to harness “the magic of light in nanostructures.” Hu walks through her research of exploring and exploiting the properties of different optical materials. She first cites the most important aspects of an optical material, such as its color (emission and absorption wavelength); its ability to convert energy efficiently; how long it remains excited when stimulated; and whether we “get more output than we put in.” Hu looks for optical material in nature, then superimposes another pattern on it, substantially transforming it at the atomic level. In one case, she uses gallium arsenide of a wavelength or so thickness, and pokes such tiny holes in it that photons of light behave differently when they encounter the structure. As Hu says, “I’m sculpting out a particular environment for photons.” Her gallium arsenide nanostructures contain a tiny cavity or “sweet spot” that creates a high intensity electromagnetic field that interacts in a specific way with photons and atoms. Each structure has a unique optical signature. Hu makes an analogy to an organ pipe, an acoustic resonator, which due to its unique geometry, produces a different pitch as air moves through it. Hu goes on to describe how a nanostructure works with simple low energy, high energy electron states, and how the cavity exerts influence on atoms to create a relationship between electronic and photonic states, what she calls “weak coupling.” Hu has also been mixing matter and light to create new quantum states. She describes placing an atom precisely in the sweet spot, exciting it to release a photon, changing the photon’s state and stimulating an atom again: “If I do this procedure exactly right… we can transfer energy between the environment and the atom almost forever.” To achieve the optimal effect, atoms and photons must behave predictably and do as they’re directed. To accomplish this, Hu and colleagues have fashioned semiconductor quantum dots 50 angstroms wide as tunable optical emitters, and fabricated photonic crystal membranes with patterns etched out by electron beams. Hu’s found she can control and manipulate the release of photons more and more precisely within her nano environments, creating new quantum mechanical states, and exerting a “much more powerful influence on the nature of light.” This work, concludes Hu, has “profound implications for processing information.” |
关 键 词: | 纳米元件; 光学材料; 可调谐光发射器 |
课程来源: | 视频讲座网 |
数据采集: | 2021-11-27:zkj |
最后编审: | 2021-11-27:zkj |
阅读次数: | 113 |