基于概率模型的EEG/MEG信号源分离与连通性分析Separating Sources and Analysing Connectivity in EEG/MEG Using Probabilistic Models |
|
课程网址: | http://videolectures.net/bbci2012_hyvarinen_probabilistic_models/ |
主讲教师: | Aapo Hyvärinen |
开课单位: | 赫尔辛基大学 |
开课时间: | 2012-12-03 |
课程语种: | 英语 |
中文简介: | 目前,人们对分析静息状态或相对自然条件下(如看电影时)的大脑活动越来越感兴趣。当使用功能磁共振成像(fMRI)时,这种分析通常由独立分量分析(ICA)完成。然而,在分析类似条件下EEG或MEG测量的数据方面还没有太多的工作。为此,我们最近开发了各种概率方法。首先,我们利用EEG/MEG数据的特殊结构,创建了新的ICA变体,以更有效地分离大脑活动的来源。其次,我们开发了独立分量的统计显著性检验。第三,我们开发了一个因果关系(连通性)分析框架,在贝叶斯网络或结构方程模型的背景下使用数据的非高斯性。在本次演讲中,我将简要介绍ICA的理论,然后讨论这些最新发展。 |
课程简介: | Currently, there is increasing interest in analysing brain activity in resting state, or under relatively natural conditions such as while watching a movie. When using functional magnetic resonance imaging (fMRI), such analysis is typically done by independent component analysis (ICA). However, there has not been very much work on analysing data measured by EEG or MEG in similar conditions. We have been recently developing various probabilistic methods for that purpose. First, we have created new variants of ICA to more effectively separate sources of brain activity by exploiting the special structure of EEG/MEG data. Second, we have developed tests of the statistical significance of the independent components. Third, we have a developed a framework for analysis of causality (connectivity) which uses the non-Gaussianity of the data in the context of Bayesian networks or structural equation models. In this talk, I will give a short introduction to the theory of ICA, and then I will discuss these recent developments. |
关 键 词: | 独立分量分析; 概率方法; 大脑活动 |
课程来源: | 视频讲座网 |
数据采集: | 2021-11-27:zkj |
最后编审: | 2021-11-27:zkj |
阅读次数: | 47 |